Tivoli Provisioning Manager for Images
Version 7.1.1.16

Reference Guide

<||IH

Tivoli Provisioning Manager for Images
Version 7.1.1.16

Reference Guide

..lli

il Tivoli Provisioning Manager for Images: Reference Guide

Contents

Chapter 1. Keyboard navigation on the
target.

Chapter 2. The web interface.
Server status

Server parameters

Server history .

OS deployment

Server log files.

Chapter 3. Database schema.
Database schema overview

Bill of Material-related tables .

OS configuration-related tables .

Chapter 4. OS deployment server
configuration .
Global parameters .
Base parameters . .
web interface parameters .
Boot module parameters .
Network boot parameters.
File access module parameters .
Network share module
New targets default parameters
HTTP Console Security parameters
Authentication domains . .
TCP tunnels . . .
Creating a new hardware rule .
Default port numbers .
Configuring OS deployment server w1th a text flle
Parameter reference .o
Global parameters .
Authentication domains .
TCP tunnels .

Chapter 5. OS deployment object
parameters .

Target parameters and deta1ls

OS configuration parameters

Chapter 6. Java API
Getting started with Java API

© Copyright IBM Corp. 2014

—

o Ul Ul w W

©

[e=>JANeRNe}

. 13
.13
.13
.14
.15
. 16
.17
.18
.18
.19
. 20
.21
.21
.23

24

. 31
.31
. 52
. 53

. 55
. 55
. 60

. 65
. 66

Configuring the OS deployment server to use the
Java API Lo
Examples . .
Compiling and runnmg examples
Understanding the sequence of procedure calls
Example classes .
Deployment server conﬁguratlon and mamtenance
Server connection and status
Deployment server settings .
Targets .
Deployment ob]ects
RBConfiguration class .
RBSoftwarePackage class .
RBBootServer class .
Deployment server tasks .
Task templates
Task variants .
Task scheduling .
Task targets
Events . .
Controlling API traces

Chapter 7. Command-line interface
NetClnt.

Using NetClnt mteractlvely

Using NetClInt in batch mode

Using NetClInt to manage the shared rep051t0ry

NetCInt command reference . e
RbAgent .

RbAgent command reference

Built-in RbAgent operations .

. 66
. 67
. 67

68
.71

74
. 74
.75
.75
.77
.77
.78
. 78
.79
.79
. 83
. 83
. 84
. 84
. 85

. 87

. 87
. 87
. 88

88
. 89
. 94
. 94

.95

RbAgent and access to remote files on Wmdows 101

rad-mountimage command reference . 102
rembo command reference . . 103
dbgw command reference . . 105
Chapter 8. Glossary . 107
Chapter 9. Notices . 113

iii

iV Tivoli Provisioning Manager for Images: Reference Guide

Chapter 1. Keyboard navigation on the target

When a target is controlled by the OS deployment server and is in the PXE kernel,
you can navigate using the keyboard.

The keys described in are assigned navigational functions when the target
is controlled by the OS deployment server and is in the PXE kernel. If the
controlled target is in the PXE kernel, the word kernel appears in the lower right
corner of the target screen.

Table 1. Keys and actions

Key or key

combination Action

Enter Selects

Tab Goes to the next control

Esc Deletes content of a text field

Exits from a menu

Ctrl+S and Ctrl-Esc

Opens the start menu

Alt+F4 Closes the window
Alt+Tab Toggles between windows
Alt+Right Arrow Scrolls right

Alt+Left Arrow Scrolls left

Alt+Page Down

Scrolls down

Alt+Page Up

Scrolls up

Print Screen

Takes a screen snapshot and stores it under files/global/
snapshot.png

Alt+Print Screen

Takes a window snapshot and stores it under files/global/
snapshot.png

Ctrl+Alt+Backspace

Reinitializes USB devices

If you have difficulties in getting the focus on a window when only one is open,
open and close the start menu with Ctrl+S, followed by Esc.

© Copyright IBM Corp. 2014

2 Tivoli Provisioning Manager for Images: Reference Guide

Chapter 2. The web interface

The web interface is the most common way of interacting with the provisioning
server. It is an Web-based console viewed in a standard browser and does not have
to run on the same computer as the provisioning server.

The supported browsers are Internet Explorer and Mozilla Firefox. For the

supported Internet Explorer and Mozilla Firefox versions, see

Note: Mozilla Firefox 2.0.0.2 does not work on Linux PowerPC® 64-bits.

To reach the web interface, type the name of the computer on which the
provisioning server is located (or Tocalhost if the browser is on the same
computer as the server), with port 8080.

To access the web interface, you need a valid user name and password. You
entered these into the provisioning server during the product installation.

On the web interface login page, there is a link to navigational tips for first time
web interface users. You are strongly encouraged to follow the link and read these
tips.

The web interface is divided into five components:
* Server status
* Server parameters
* Server history
¢ OS deployment
* Server log files
* Advanced features:
— Deployment engines
- Hardware configuration

— Image monitor

You can access these components
* by clicking on their respective icons in the main frame of the web interface
* by using the menu provided in the left frame of the web interface

Server status

Server status information is further subdivided into four sections: General
information, Installation check, Network connections and web interface extension.

General information

Items in the General information section are read-only and contain:

* General server information, such as the OS deployment server version,
the number of active targets, and the last warning message

* OS deployment server statistics, including the number of successful
boots, and ignored boots, and the current boot module load

© Copyright IBM Corp. 2014 3

* File server statistics, containing information about MCAST, unicast, and
PCAST sessions, and TCP connections

* Web interface modules, including statistics on the HTTP connections and
operations

Installation check

Items in the Installation check section are read-only. It provides a
summary of all errors that have happened in the past 30 minutes. They are
presented in distinct sections representing their associated log file.

If you are not familiar with Tivoli® Provisioning Manager for Images, use
Check PXE Boot at the bottom of the screen. A wizard helps you
understand and check all of the necessary steps to ensure that the target
works with your OS deployment server.

Network connections

Displays the active connections onto the OS deployment server. They are
presented with thee different links: Unicast connections, Multicast
connections, and HTTP connections.

The numbers Traffic IN and Traffic OUT are in Kilobytes (total number of
KB seen on this connection).

web interface extension

Displays the status of the web interface extension on the computer that is
running the browser.

Server parameters

Server parameters are used in the OS configuration of the Provisioning server.

Server parameters are used to configure the OS deployment server. They are
divided in to five sections:

OS configuration
provides read and write access to the main server OS configuration
parameters.

HTTP console security
allows you to change the administrator name and password, and to create
security roles to secure access to the OS deployment server through the
web interface.

Predefined channels
is the location to define TCP tunnels and authentication domains.

Hardware handling
provides information about the known compatibility and incompatibility of
hardware devices with Tivoli Provisioning Manager for Images.

Server replication
allows you to replicate parent and child servers. See "Multiserver
infrastructure” in the Installation Guide for more information.

4 Tivoli Provisioning Manager for Images: Reference Guide

Server history

The Server history component helps you to follow the task of your OS deployment
server.

It is divided into four sections:

Server statistics
There are three different pages that show graphically the load of the
processor, the network and the number of targets working with the OS
deployment server. The graphs are displayed for the past 24 hours, the
past week and the past month.

Each of the Network traffic graphs has two scales. The left scale shows the
total inbound and outbound traffic, and the right scale shows multicast
traffic. Numbers are in Kilobytes per minute (KB/min).

Deployment statistics
Deployment statistics show you, through tables, when deployments were
performed over the last 24 hours, the last month, or the last two years. You
can select to view successful or failed deployments by OS configuration, by
deployment scheme, by computer model, or by administrative group. You
can export the deployment statistics into a CSV format by clicking
Download as CSV data file.

Modification history
Keeps track of creations, deletions, and modifications on OS configurations,
system profiles, deployment schemes, and software modules. For every
update, the page displays the date and time of the update, its author, its
item description, and its new version number.

Tasks tasks include most actions performed from the OS deployment server on
targets. Examples of tasks are deployment, creation of cloning profiles,
detection of the operating system currently on a target.

Displays a description, an execution and an expiration date, current state,
and progress rate. You can expand a task by clicking on its + sign to view
its target or targets.

To cancel a task, select Cancel task from the contextual menu when a
target is selected.

See also [deploy/tosd_monactivity.dita}

OS deployment

The OS deployment component provides access to the main functions of Tivoli
Provisioning Manager for Images, allowing you to manage targets and to prepare
and run deployments.

It is divided in to four sections:

Target Monitor
to manage the targets

Task template
to manage screen layouts on the target and deployment schemes

Profiles
to manage the operating system profiles and OS configurations

Chapter 2. The web interface 5

Software modules
to manage software to be deployed with an operating system

Server log files

Server log files help in diagnosing problems and recording commands.
Log file description

There are two sets of files for the logs contained in the TPMf0S Files folder: .Tog
and .trc. For example, there is a vm.1og file and a vm. trc file. The .log files
contains information understandable by all users. It is in the language in which the
product was installed. The .trc files contain more detailed information and are
designed for the support team. It is always in English. When sending logs to
support, make sure to always include the .trc files.

There are several distinct log files:

files/logs/tasks.log
all tasks status changes. Its content cannot be viewed from the web
interface. Once the log file has reached a certain size, it is automatically
reduced and the oldest data are deleted.

files/logs/activities.log
This log allows you to view when a replication task was started. Its
content cannot be viewed from the web interface.

files/global/hostactivities.log
This directory contains the list of all target tasks. Its content can be viewed
from the Tasks page of the Server history, where it is merged with the
information provided by activities.log. To send the logs of a given task
to support, ideally select the task and select Export debug data in the
contextual menu.

Boot log file or files/logs/boot.1og
This log is useful when diagnosing DHCP/TFTP problems. Its content can
be viewed in theServer log files page of the web interface.

File log fileor files/logs/File.log
This log is useful to diagnose multicast file transfer problems. Its content
can be viewed in the Server log files page of the web interface.

HTTP log file or files/1ogs/HTTP.log
This log records requests made by the web interface. Its content can be
viewed in the Server log files page of the web interface.

NBP log file or files/logs/NBP.1og
This log records remote target commands such as authentication, tracking
logs, and so on. Its content can be viewed in the Server log files page of
the web interface.

TCP log file or files/1ogs/TCP.1og
This log is used to diagnose unicast file transfer problems. Its content can
be viewed in the Server log files page of the web interface.

VM log file or files/logs/VM.1og
This log records events generated by background tasks running on the
server. Its content can be viewed in the Server log files page of the web
interface.

6 Tivoli Provisioning Manager for Images: Reference Guide

Sync log file or files/Togs/rsync.log
This log file contains information specific on replication: checking files,
finding them or not, copying them, and so on. Its content can be viewed in
the Server log files page of the web interface.

Note: The files directory corresponds to the main data directory. Under Windows
operating systems, it is TPMfOS Files by default.

Retrieving pertinent information in the logs

To help you retrieve pertinent information easily, the following features are
available in the web interface:

* Logs are color coded. Blue indicates no warning or errors, yellow indicates
warnings, red indicates errors.

* Logs are hierarchical. Clicking on the expand sign allows you to see more
details.

* Logs are chronological. If you want to go to a specific date and time in a log file,
click Jump to ..., enter the date and time, and click Jump. The log section with
the given date and time expands. If no section has the exact given date and
time, the section just before the given time and date expands.

Log file cleaning

From the Server Log Files page, you can also clean the contents of the log files.
You can either delete the content of individual server log files or perform a partial
cleaning of all the server log files. You can also delete or perform a partial cleaning
of all target log files.

Partial cleaning of a log allows you to keep the most recent content only. You can
keep information of the latest

* 30 minutes,
* 60 minutes,
* 6 hours,

* 12 hours,

e 24 hours,

* 1 week,

e 2 weeks,

e or 1 month.

Log data older than the selected time is deleted.

Chapter 2. The web interface 7

8 Tivoli Provisioning Manager for Images: Reference Guide

Chapter 3. Database schema

The database schema documentation describes the most important items of the
database schema used by Tivoli Provisioning Manager for Images to store and
manage targets and images. Further details can be found in the reference database
file, AutoDeployDistrib.ini, in the program installation directory.

Database schema overview

In Tivoli Provisioning Manager for Images, database schemas are used to store and
manage targets and images.

The database schema can be divided in two parts:

* The Bill of Material-related tables (BOM, DiskInventory, DMIInventory,
PCIInventory, PCIDescription, Deployment, ErrorLog, Settings, UserProfile)
that store all target and user-dependent information

e The OS configuration-related tables (SoftwareProfile, Softwareltem,
GroupingRule, Groups, SystemProfile) that retain information related to the
software modules and operating system that can be deployed

Bill of Material-related tables

There is one Bill of Material (BOM) record for each remote-boot target that has
been started on the OS deployment server. The Dep1Count field is a counter that
allows you to track the number of deployments that have been run for a particular
target(the summary of each deployment can be found in table deployment). The
field Status indicates the current state of this target:

e If the target was last used to create an image, or if the deployment is configured
with no database update, the status is empty

e If the target is showing the parameter edition window and waiting for BOM
information to be reviewed (in the database or on the target), the status is
editbom

e If the target is determining its software configuration (at the beginning of the
deployment), the status is 0/

* During the deployment, the status is x/y, where x is the current stage number
and y is the last stage number (each stage ends with a restart)

+ After a successful deployment, the status is ok

* In case of error, the status is error and the error time and message can be found
in the table ErrorLog

Most target-specific parameters are stored directly in the BOM table. User-specific
parameters are stored in the UserProfile table (and identified by the UserID key).
The Locale field stores the Microsoft locale code, and the TimeZone field stores the
Microsoft time zone index (a list of which can be found in the Windows registry).
There are also nine freely configurable user categories that can be used to store
information regarding the user (such as position, department, and location), and
that can be used in the software matching mechanism.

The hardware inventory is stored in the three tables on the left, at the beginning of
the deployment, after the BOM edition stage. There is one record in the

© Copyright IBM Corp. 2014 9

DiskInventory table per disk detected, one record per target in the DMIInventory
table (see the database for the exhaustive list of fields) and one record per PCI
adapter in the PCIInventory table.

The Settings table lists deployment schemes. The actual settings for each
deployment scheme are stored in an .ini file on the OS deployment server, whose
prefix is made using the DeplSet identifier.

OS configuration-related tables

Every OS configuration is stored as one row in the Groups table. Each OS
configuration is bound to exactly one system profile, but for multiboot systems
there can be several OS configurations for a single system profile.

All system profile-dependent parameters (such as partitioning scheme) are stored
in the SystemProfile table. Primary partitions are stored in the PrimPart field and
logical partitions in the LogiPart field, as a space-separated list of partition
type:size (size is in MB). The column OSPart is the index of the partition on
which the operating system shall be installed. The image fields store the name of
various image files on the OS deployment server (0SImage is the prefix used for the
OS partition, DiskImage is the prefix used for all other partitions). The Model field
is optional and used to perform computer model checking/locking if requested, to
ensure that the correct operating system is deployed on each model of computer
(check is made as a substring, that is, a system profile flagged for Supra matches
any computer model with Supra in its model name, as found in the DMI tables).
There are four freely configurable system categories, that can be used to store
information regarding the system profile such as preconfiguration, distribution,
and that can be used in the software matching mechanism (see the information
later in this section for the explanation of table SoftwareProfile).

The relation between the BOM table and the Groups table is not direct, but is done
through the GroupingRule table. In the simplest case, a row of this table only
includes the BomID of a target record and the Group ID of the selected
configuration. If several OS configurations are bound to a target, several rows are
used. In a more complex case (automatic binding rules), the table acts as a
dynamic relational index and follows a kind of rule-matching behavior. For each
record of the table, if all specified values are matching those of a target, the
corresponding OS configurations will be bound to it. The field Condition can
include an additional Rembo-C condition to check before in addition to the pattern
matching mechanism.

The Softwareltem table (on the bottom right) record information regarding every
software modules that can be deployed. Each software is identified by its
SoftItemID. There is typically one record per software module, but there can be
more than one if a package involves for instance both a file copy and a command
line (each of which is described by a record). For each record, the type field
identifies the kind of item:

* copy items are used to copy a tree of files to the OS partition. The Source is the
file archive on the server, the Dest is the destination path.

* run items are used to start a command-line, for instance to run an unattended
setup. The Dest is the full command line to run.

* ini items are used to make changes to an .ini (or .inf) file on the OS
partition. The Source is the name of the .1ini file on the OS deployment server,
the Dest is the destination path and file name of the file to update.

10 Tivoli Provisioning Manager for Images: Reference Guide

e diff items are used to install a system snapshot. The Source is the file archive
on the server.

* floppy items are used to start a non-DOS virtual floppy-disk image (in a
ramdisk), for instance to run a vendor-specific firmware upgrade utility. The
Source is the raw image name on the server.

* part items are used to start a DOS virtual floppy-disk image (as a ramdisk or on
a partition), for instance to run a BIOS upgrade utility. The Source is the
partition archive on the server, the Dest is the destination partition and mode.

Other software module parameters are the Pass number at which the software
must be applied, and a boolean SysOnly that prevents the software from being
made visible to the user in the BOM edition stage when turned on.

The choice of what software is to be installed is controlled by the SoftwareProfile
table. This table acts as a dynamic relational index and follows a kind of
rule-matching behavior. For each record of the table, if all specified values in the
first sixteen columns are matched, the software item specified by the identifier in
SoftItemID will be applied. For instance, software modules can be associated to a
specific target by adding a record with the BomID of the target and the SoftItemID
of the software. In the same way, software can be bound to a specific system
profile or group. More complex OS configurations can also be used to implement
the software binding rules.

Chapter 3. Database schema 11

12 Tivoli Provisioning Manager for Images: Reference Guide

Chapter 4. OS deployment server configuration

These topics describe the different parameters available to configure the OS
deployment server, and on how to modify the values of these parameters.

Global parameters

Global parameters are the main server side OS configuration parameters that can
be modified either on the web interface or by editing the rembo.conf file.

The parameters are divided into seven categories that mirror the sections found in
the web interface. They are:

¢ Debug level information

* Base parameters

* Web interface parameters

* Boot module parameters

¢ Network boot module parameters
* File access module parameters

* Network share module parameters
e HTTP Console Security parameters
¢ New targets default parameters

Most parameters can be modified in the web interface. Go to Server > Server
parameters > Configuration.

Base parameters

* Debug level information

GlobalDebugLevel number specifies the level of details that must be placed in
the log file.

* P address of the backup server

Backup ip-addr defines the IP address of a backup server that can be used by
the target if the primary server fails. The backup server must have the same Net
Password as this server. For the backup recovery system to work, the backup
server must also contain an exact copy of the files stored on primary server.

* Maximum size of the server log files

MaxLogSize number limits the size of the log file generated by the OS
deployment server. The maximum log size is specified in bytes, and applies to
all log files created by the OS deployment server. If you do not specify this
parameter is not set, or set to 0, then log files are not limited in size. If a limit is
set, and the server reaches this limit, the current log file is backed up and a new
file is created.

* CountersInterval minutes specifies the interval, in minutes, for the server
statistics measures.

* Network interfaces used by the server

Interfaces ip-addr specifies the list of network interfaces that the OS
deployment server uses when sending and receiving packets to and from targets.

© Copyright IBM Corp. 2014 13

If you leave this option unspecified, the server uses the network interface
corresponding to the official host name of the server. The format is a list of IP
addresses, separated by spaces.

* MaxLogNumber
defines the maximum number of files that will be kept.

web interface parameters
* Disable the HTTP module

DisableHTTP disables the web interface. If you set this parameter, run the -c
command-line option to change server parameters.

Note:
~ Disabling the HTTP module prevents you from using the Java™ API.

— Disabling the HTTP module prevents you from using the image features of
the product.

* Disable HI'TP SSL encryption
DisableSSL disables encryption in the Web interface and enables unencrypted
HTTP connections.

e TCP port for HTTP requests, TCP port for encrypted HTTP requests (SSL)

HTTPServerPort port specifies the TCP port used by the Web interface when
listening for unencrypted HTTP requests. You can set this parameter to 80 if you
want the Web interface to be accessible by typing the server host name in your
Web browser. To make the Web interface accessible by typing https followed by
the server host name, set this parameter to 443.

* Inactivity timeout before a session expires

HTTPSessionTimeout minutes specifies the timeout (in minutes) before Web
interface users are automatically logged out. A typical value is 5 minutes.

* Disable HTML contextual menus
DisableContextualMenu disables the contextual menu. When you use a
right-click in the web interface, you will see the regular contextual menu of your
browser.

* Disable HTML bottom-left menu
DisableBottomLeftMenu disables the HTML bottom-left menu.

* Disable welcome checklist page
DisableChecklistPage disables the welcome checklist page.

* Disable HTML drag-and-drop
DisableDragAndDrop disables web interface drag-and-drop operations on
selected icons. Drag-and-drop works on most common browsers, but it can be
made unavailable in case of incompatibility.

* Disable javascript drop-down lists

Disable]SDropDown disables enhanced menus in favor of standard menus.
Standard menus do not recognize DHTML layers under Internet Explorer,
therefore this parameter can cause problems.

* Disable HTTP transfer optimization
DisableHTTPOptim disables the optimization of HTTP transfer in the web
interface. Set this parameter if you do not want the web interface to group
JavaScript, stylesheets, and images into large files to reduce HTTP traffic and
enhance the cache process. You must disable this optimization if you are creating
console pages.

14 Tivoli Provisioning Manager for Images: Reference Guide

Language
Language allows you to change the language of the web interface.

Important: When you change the language, you still see messages in the
previous language in the hardware environment and in the profile wizard below
the progress bar. To make the change effective, you must first restart the rembo
server and then the rembo agent.

Boot module parameters

Disable DHCP/BINL module
DisableBOOT disables the PXE component of the OS deployment server.

When this parameter is set to Yes, it is not possible to create network boot
media.

To prevent targets booting into the OS deployment server without disabling
network boot media generation, you have two options:

— Put the server in closed server mode by setting Completely ignore unknown
targets (closed OS deployment server) to yes in the Idle state task template

— Temporarily disable DHCP proxy functionality, which prevents any
non-directed PXE request

Disable the DHCP proxy functionality

DisableDHCPProxy disables the DHCPProxy service on the OS deployment
server. The server does not send extended DHCP replies (PXE replies) to DHCP
discovery packets sent on the network by remote-boot target. When the DHCP
proxy is unavailable the server must be configured to provide a complete PXE
answer to PXE targets, including option 60 and option 43. DHCP proxy mode
must be made unavailable if you have more than one OS deployment server
operating on the same subnet.

Disable the multicast BINL functionality

BootNoMulticastDiscovery disables PXE multicast discovery support on the OS
deployment server. When PXE multicast discovery is unavailable, target
computers with multicast discovery configured in DHCP option 43 are not able
to find the OS deployment server.

UDP port for TFTP requests

TFTPPort is the port used on the OS deployment server to receive TFTP request
packets from PXE targets. The default value is 69. Note that unless your network
equipment is automatically routing TFTP packets to a non-standard part, you
must not change this setting because PXE always sends TFTP requests to port
69, without any possibility to change port.

Max. TFTP Segment Size

MaxTFTPSegSize bytes is the maximum size in bytes for TFIP segments. The
default value is 512 but a smaller one can be given if the network configuration
requires it.

Seconds to wait before starting a MTFTP stream

MTFTPStartDelay secs specifies the time, in seconds, to wait before starting a
MTEFTP transfer. This period of time is used by target computers to replicate
together. The higher the value is, the more replicated the deployment engine is.
However, latency is introduced when booting target computers individually. The
PXE standard default value is 2.

IP address used by targets for MTFTP

Chapter 4. OS deployment server configuration 15

MTFTPClients port [:target-port] specifies the multicast IP address and port
used by the OS deployment server when sending MTFTP data to target
computers.

* UDP port for MTFTP requests

MTFTPPort port specifies the UDP port used by the OS deployment server to
receive MTFTP request packets from target computers. The default value is 4015.

* Seconds to wait before sending DHCP/BINL answers

BootReplyDelay secs specifies the number of seconds to wait before answering
DHCP/BINL request packets sent by target computers. If you have more than
one OS deployment server on the same subnet, target computers use the server
with the lowest shortest reply delay. The default value is 0 (no delay).

* Max. number of requests per minute (load balancing)

BootReplyLimit number specifies the maximum number of DHCP/BINL requests
to an OS deployment server in one minute. The server discards boot requests
coming from target computers when the specified limit is reached. A number of
0 indicates unlimited requests. This parameter can be used to implement load
balancing over multiple servers.

* UDP port for DHCP/BINL requests

BootDiscoveryPort port specifies the UDP port that the OS deployment server
uses when listening for BINL boot requests. The default port used for a standard
target computer is 4011.

* Multicast IP address used for BINL requests

BootDiscoveryAddress ip-addr specifies the multicast IP address that the OS
deployment server listens to when waiting for BINL multicast requests coming
from target computers. This value must match the value set in the DHCP option
43 sent to targets.

e No-boot schedule

NoBootSchedule specifies the frequency at which the OS deployment server
stops providing a PXE boot service. It is used in conjunction with
NoBootDuration. Modify this parameter using the web interface only.

e No-boot duration in minutes

NoBootDuration specifies the duration in minutes during which the OS
deployment server stops providing a PXE boot service if a no-boot schedule is
specified. It is used in conjunction with the parameter NoBootSchedule. Modify
this parameter using the web interface only.

Network boot parameters
* Disable the NBP module

DisableNBP disables the NBP component of the OS deployment server. Because
NBP is used by target computers when booting, target computers are not able to
boot if NBP is unavailable.

* UDP port for NBP requests

NBPServerPort port specifies the UDP port used by the OS deployment server
to receive NBP requests from target computers. The default value is 4012. Only
change this value if the default port is already used by another application on
your computer.

Note: It is also possible to remote boot targets without using PXE. See
ltargets without using PXE]

16 Tivoli Provisioning Manager for Images: Reference Guide

File access module parameters

Disable the FILE module

DisableFILE disables the FILE (NetFS, MCAST) component of the provisioning
server. If you disable the FILE server module, target computers are not able to
boot on this server.

Base directory for server files

BaseDir string specifies the base directory for the provisioning server. All paths
included in the OS configuration are relative to this base directory. This is a
mandatory parameter, and has no default value (if you are using file-based
configuration mode, you must set it before starting the provisioning server for
the first time).

Relative directory for the shared repository

SharedDir path specifies the path relative to the server file directory for storing
the shared repository internal files. By default, this parameter is set to shared.

First multicast IP address used for MCAST transfers

FileMCASTAddress ip-addr:port specifies the multicast IP address used when
sending packets to target computers. The OS deployment server can generate
different multicast IP addresses using this parameter as the base for the first
address in a range.

Number of multicast addressed to use for MCAST transfers

FileMCASTAddrCount number specifies the number of multicast addresses that
the provisioning server can use when sending multicast data to target
computers. This parameter sets the size of the range of multicast addresses that
the server can use. This range begins with the address set by the parameter
FileMCASTAddress.

Maximum number of PCAST connections

FileMaxPCASTSessions indicates the maximum number of PCAST sessions that
the provisioning server accepts simultaneously. This parameter is relevant if the
server is running in UNICAST mode and deploying a group with the UNICAST
setting.

Port for FILE requests

FileServerPort port specifies the UDP port used by the provisioning server to
receive transfer protocol control requests. The default value is 4013, but you can
change this parameter if port 4013 is already used by an application on your
computer.

Disable the TCP module

DisableTCP disables the TCP component of the provisioning server. Target
computers might not be able to boot on this server if you disable the TCP server
module.

Directory for internal files

DataDir path specifies the path relative to the provisioning server base directory
for storing files accessible to the target computer. By default, this parameter is
set to files.

Note: You can specify the DataDir as the network driver disk by using a UNC
path.

Disable Multicast across subnets

Set the DisableWideMCAST parameter to Yes if your network infrastructure
does not handle multicast routing efficiently, or if you do not want to send
multicast packets across subnets and VLANS. If you disable multicast routing,

Chapter 4. OS deployment server configuration 17

multicast packets will only be sent locally on each subnet. This might increase
the OS deployment server load when serving multiple subnets simultaneously.

 Limit for shared IDX in memory

Using the CachedIdx 64 parameter, you can enter the maximal number of
shared indexes cached in RAM. Their size is approximately 2.5 MB. They are
cached in RAM for faster access. The default (and maximal value) for this
parameter is 64. Setting a value lower than the number of indexes in your OS
deployment server shared repository will limit the memory consumption but
might also slow down the access to the shared files.

Network share module

* Network UNC path

NetworkShare path specifies the path of the shared partition directory of the OS
deployment server. The OS deployment server shared partition directory is the
following:

C:\TPMfOS Files\global\partition

which is made accessible using a Windows network sharing protocol. This
parameter can be used to increase the deployment speed of some operating
systems. You need to have set the partition as read-only for the user entitled to
access the network share.

o User entitled

NetworkUser "string" is the name of the user entitled to access the network
share. If the user is part of a domain, use the syntax Domain/User.

* Password of the user

NetworkPasswd "string" is the password used to access the network share. The
password is stored in an encrypted format in the rembo.conf file.

Note: If the Network UNC path, the User entitled, or the Password of the user are
not correct, you get an error when attempting deployment using the network
share. If the Network UNC path is empty, the deployment does not try to use a
network share.

New targets default parameters

Targets are assigned a set of default parameters.

The following parameters can be modified in the web interface, or in the
rembo. conf file.

* Completely ignore unknown targets/ Let unknown computers contact another PXE
server/ Make unknown computers boot on their hard disk/ Make unknown computers
boot on their hard disk when there is no pending task

DefaultPXEBootMode { normal | hdboot | ignore | otherPXE | BootIfIdle}
When the OS deployment server becomes aware of an unknown PXE target
trying to boot from the network, it can decide whether to add the target
automatically to its internal database. To add the new target, include normal in
your argument list. To exclude unknown targets, add ignore in your argument
list. You can leave them alone to discover another PXE server, force them to boot
on their hard-disk, or force them to boot on their hard disk when no task is
pending. Add otherPXE, HDBoot, or BootIfIdle in your argument list to obtain
the wanted behavior.

* Tivoli Provisioning Manager for Images kernel options

18 Tivoli Provisioning Manager for Images: Reference Guide

DefaultOptions [autoboot] [, KernelFree] [, nousb] [, noautousb] [, novesa
][, noapm] [, unicast] [, noudma] [, noprotpart | [, realmodedisk] [,
realmodePXE][, routepxeirg] The argument of this parameter is a list
composed of the following elements, separated by commas: autoboot reboots
automatically on unrecoverable errors, NoUSB disables USB devices, , KernelFree
defines the target boot in kernel-free mode, noautousb enables USB devices only
when no PS/2 connection is detected, NoVESA disables the graphic interface,
NoAPM disables the APM, Unicast disables multicast, NoIGMP2 disables IGMP
version 2, NoUDMA disables Ultra-DMA, NoProtPart disables ATA-5 features,
ReaTlModeDisk disables enhanced disk access, RealModePXE disables enhanced PXE
access, andRoutePXEIRQ reroutes network IRQ separately from the disk controller
IRQ .

* Human interface locking

DefaultLockOut [none] [, mouse] [, keys] [, screen] [, all] The argument
of this parameter is a list composed of the following elements, separated by
commas: Mouse disables the mouse, Keys disables the keyboard, Screen disables
the screen, and ALL disables the mouse, keyboard, and screen.

Other parameters for new targets can be configured only by editing the rembo.conf
file.

* Preferred screen resolution

DefaultResolution "string" specifies the default screen resolution for new
targets.

* Authentication domain
DefaultAuthDomain "string" specifies the default authentication domain to use

when a target wants to check credentials. This domain can be overridden
individually for each target.

Server for files services

DefaultFileServer ip-adr:port specifies the default file server, given by its IP
address (and port number), for new targets.

* Boot redirection servers
DefaultBootRedirectionip-adr [, ip-adr] specifies the IP address of an OS
deployment server to which boot requests of the targets must be redirected.

Optionally, a second redirection server can be indicated, in which case you must
separate the two IP addresses by a comma.

HTTP Console Security parameters

In the web interface, these parameters can be modified on the Server > Server
parameters > HTTP Console Security page.

* Super-user login
HTTPAdminName "name" specifies the superuser login of the OS deployment

server administrator, in order to access all OS configuration parameters of the
server. There is only one superuser login.

* Super-user password

NetPassword "string" specifies the password used by the main OS deployment
server administrator This password is used to protect the server files against
illegitimate remote access.

e New security role

Chapter 4. OS deployment server configuration 19

HTTPRole "name" {Members "stringlist" AllowPages "stringlist"
AllowGroups "stringlist"} allows new members to access the web interface by
specifying which pages are available to them and which administrative groups
these new members can manage.

Authentication domains

An authentication domain is a group of parameters related to the authentication of
users by Tivoli Provisioning Manager for Images.

The term domain has nothing to do with Windows NT domains, or NIS+ domains.
Parameters contained in an authentication domain define how user and password
information entered on a target workstation are checked by the OS deployment
server. For example, they can be checked against the local server database of users,
or through a remote authentication device. Additionally, Tivoli Provisioning
Manager for Images allows you to restrict the search for matching users to a single
user group for greater flexibility.

Note: In order to setup security roles, you must create an authentication domain
named HTTP.

The OS deployment server supports several authentication protocols, depending on
the platform of the server:

* On Windows, a user identity can be verified with the local user database, or a
remote user database (but still on a Windows server)

* On UNIX, the user identity is verified with the standard user database functions,
which can be configured to use local files, NIS or NIS+. PAM is used if the
server is running on Linux

* On both platforms, the OS deployment server can use the authentication
standard Radius to perform the authentication with a device supporting the
Radius protocol, or with a Radius gateway for Netware (NDS).

Note:

1. On Windows, the Tivoli Provisioning Manager for Images service
(rembo.exe) must be run as a user, not SYSTEM, and the user must have the
role of Act as part of the Operating System.

2. 1If you are using NT remote authentication, the OS deployment server must
have this privilege on the remote computer. You must start the IBM® Tivoli
OS Deployment Server (remboserver) and IBM Tivoli Web Interface Extension
(remboagent) services with domain accounts that have the NT remote
authentication privileges.

3. Authentication with redeployment does not work if the target is offline (the
target has no network connection and boots from the hard disk). A message
warns the user.

If you are modifying the server configuration in the web interface, you can add a
new authentication domains by clicking New auth. domain in Server > Server
parameters > Predefined channels and entering the appropriate information.

If you are maintaining your server configuration directly in the text file
rembo.conf, you must add authentication domains in the configuration file. Each
domain starts with AuthLocalDomain, AuthNTDomain (on Windows only), or
AuthRadiusDomain, and is followed by the name that you want to attribute to this
domain. For example:

20 Tivoli Provisioning Manager for Images: Reference Guide

AuthLocalDomain HTTP {}

There are three types of authentication domains:

* Local domains uses the local user database to authenticate a user. The optional
UserGroup parameter can be used to restrict the verification to a specific group of
users. This type of domain is supported by both Windows NT and UNIX.

* Remote NT domains forwards authentication requests to the NT server specified
by the mandatory parameter AuthServerName. The parameter UserGroup can be
used to restrict the verification to a specific group of users. This type of domain
is supported only in Windows.

* Radius domains forwards authentication requests to the Radius-compliant device
specified by the parameter AuthServerAddress. The value of the parameter
RadiusSecret is used as the password for the Radius communication, and must
match the password stored in the configuration of the Radius device for the
protocol to work.

TCP tunnels

A TCP tunnel is a way to provide TCP connectivity to target computers.

* In Tivoli Provisioning Manager for Images, you must have an 0DBC tunnel to
access the database. This tunnel is present by default.

* A sendmail TCP tunnel is mandatory to receive e-mail notification at the end of a
deployment.

Creating a new hardware rule

Hardware rules are useful to work around problems related to some specific
hardware.

At boot on the Tivoli Provisioning Manager for Images, a target will be compared
to the hardware rules and if there is a match within the list, some specific features
(potentially making problems for that hardware) will be unavailable, for instance:
"enhanced PXE access", "ATA-5 features", and so on. When Tivoli Provisioning
Manager for Images is shipped there is a built-in default hardware rule list that is
a list of the known hardware making problems at the time of the build. However,
new hardware coming out is not listed here and if any new hardware causes
problems it can be resolved by manually disabling specific features.

At remote-boot the hardware of a target is immediately detected and compared to
the hardware rule list, the selected features will then be unavailable if necessary.

To create a New hardware rule:
1. Go to Server > Server parameters > Hardware handling.
2. Click New hardware rule.

3. Select one or several of the offered options.
Specific PCI device present:

PCI (Peripheral Component interconnect) devices are peripheral
components connected on the PCI bus of the system board. These are
typically: network cards, sound cards, Disk/USB controllers and so
on.You can specify the PCI device that the rule is to be based on and
enter information in the following fields:

* Vendor ID (4 hex digits)

Chapter 4. OS deployment server configuration 21

* Device ID (4 hex digits)
* Revision (optional, 2 hex digits)

Note: To view Vendor/Device/Revision information,go to Server > OS
deployment > Target Monitor. Double-click on a target to view its
details. Look in the Inventory tab, under PCI devices.

Specific Model name:
You can specify a model name for the rule it is based on. For example:
eServer = xSeries.

Specific Linux distribution
You can specify the Linux distribution name for the rule it is based on.
For example: SUSE , Red Hat.

Specific type of chassis
You can specify the Type of chassis for the rule it is based on. For
example: Single Chassis , Multi Chassis.

Specific OS Architecture
You can specify if you are working with a 32-bit or a 64 bit
architecture.

4. Depending on your selections, the wizard provides steps with easy-to-follow
instructions to create the new hardware rule.

5. Select what the rule will do if chosen criteria are met.

* Change Tivoli Provisioning Manager for Images kernel flags. The options
available are:

— Use kernel-free flow
— Reboot on unrecoverable errors
— Disable USB
— Disable Auto USB
— Disable graphic interface
— Disable APM
— Disable multicast
— Disable IGMP version 2
— Disable Ultra-DMA
— Disable ATA-5 features
— Disable enhanced disk access
— Use BIOS for CD/DVD ROM access
— Disable enhanced PXE access
- Try to optimize IRQ
¢ Change Linux kernel parameters. Changing the Linux kernel parameters
option requires a command line parameter to be entered that will be used

when Linux is deployed and rule criteria are met. Enter the command line in
the Linux kernel parameters field.

* Enable remote power management feature, using either Intel Active
Management Technology or by performing the following, Go to Server >
Server parameters > Hardware handling > New hardware rule . Here you
can define a rule that will show the hardware where Remote power
management is available. In the Host details page if there is a matching
hardware rule for remote power management then Switch on and Switch
off buttons will be visible.

22 Tivoli Provisioning Manager for Images: Reference Guide

Note: These targets can also be switched on by checking the Try to wake up

targets using management interface in the deployment wizard. If you use

the Command line technology to remotely power on and off the target, you

can specify the [IF] parameter to customize the command. In the Remote

power management section of the Target details page, assign a

target-specific value to the [IF] parameter, for example specify the target IP

address. This value replaces the [IF] parameter in the command line to
power on or off the specific target machine.

6. Follow the wizard instructions to complete the rule.

At remote-boot the hardware of a target is immediately detected and compared to

the hardware rule list, the selected features will then be unavailable if necessary.

Default port numbers

During the installation process, you can choose to accept the default port numbers
proposed or you can specify alternate unused port numbers.

The following table lists the default port numbers that are used by Tivoli

Provisioning Manager for Images.

Table 2. Default port numbers used by the server

Name of port Default port number

DHCP 67 UDP

HTTP 8080 TCP

PXE BINL 4011 UDP

TFTP 69 UDP

MTFTP 4015 UDP

NBP 4012 UDP

FILE 4013 UDP and TCP

MCAST 10000-10500 UDP Address: 239.2.0.1 -
239.2.1.1

Table 3. Default port numbers used by the web interface extension (rembo agent)

Name of port

Default port number

Listening port

4014 UDP

The web interface extension (rbagent) connects to ports 4012 and 4013 on the OS

deployment server to retrieve information and files. Port 4012 is normally used when
sending commands, while 4013 is used when dealing with file transfers. The source port of
the agent when connecting to 4012 and 4013 is random.

Table 4. Default port numbers used by the client PXE

Name of port

Default port number

DHCP

68 UDP

MTFTP

8500-8510 UDP Address: 232.1.0.1

MCAST

9999 UDP

Remote control (agent)

4014 UDP

Chapter 4. OS deployment server configuration

23

Configuring OS deployment server with a text file

A single text file (config.csv) can be used to configure all the OS deployment
servers in a complex environment.

OS deployment servers can be configured using a file named config.csv (comma
separated values). The advantage of this configuration file over other configuration
methods is that the same file can be used to supply different configuration
parameters to a large number of OS deployment servers installed in a big
organization.

You must place the file config.csv in directory <datadir>/global/rad, for instance
c:\TPMfOS Files\global\rad on a Windows server.

The same configuration file can be used for all the OS deployment servers in the
organization. But it must be deployed on all the OS deployment servers. The
reason is that each OS deployment server reads the configuration file from its local
file system, and filters out all irrelevant information. The file can also be different
for different parts of the organization, or even for each OS deployment server. It is
up to the operator to select the most convenient management strategy.

The file is read automatically at server startup, or on demand, using the web
interface extension command rad-configure. Some of the changes automatically
trigger a server restart to be properly applied.

Each line in the file describes one OS deployment server. The fields are separated
by a semicolon ;. Fields can be optionally quoted with double quotes ("). The
double quotation mark itself must be repeated to differentiate it from a quotation
mark. Fields containing a semicolon or a double quotation mark must be quoted

(see [Table 5).

Table 5. Code

Field Interpretation
abcd1234 abcd1234
"abcd1234" abcd1234
"abed;1234" abcd;1234
"abed™'1234" abcd"1234
abcd""1234 abcd1234
abcd";"1234 abcd;1234

Note: The first line of the config.csv file must contain the label of the fields.

This file format can be conveniently imported and exported by Microsoft Excel and
OpenOffice.

Field description

Within one line, each field is interpreted according to its position. The
interpretations are detailed in the information shown later in this section.

HostName

24 Tivoli Provisioning Manager for Images: Reference Guide

Interfaces

This can be either the host name (for example: rembomaster) or the
fully qualified name (rembomaster.rembo.com) of the target targeted by
this line of the file.

There are two very important constraints on this field.
1. All the letters in the name must be lowercase.
2. The name must be immediately followed by the semicolon.

If one of these two constraints is not true, the script which parses the
file will not be able to recognize the line and the server will not be
configured properly.

As a side effect, all the lines which do not start with a valid host name
are considered to be a comment. The prefix ;RBO " is reserved for
internal use (for example: ";RBO;DB2_BIN_DIR;")

When an OS deployment server has recognized its HostName, the
parameters found in the line overrides the values that were supplied
earlier, for instance when running the setup program or by the means
of a rembo.conf file.

The list of IP addresses used by this OS deployment server. If the
server has several interfaces, PXE remote boot is available only for the
interfaces listed in this field. Addresses must be given in the dotted
notation (for example: 192.168.168.16), and separated by one space
character.

DbName DbUser DbPass

Connection information for the server database used by this OS
deployment server. Typical value for DbName is "AutoDeploy". The
password can be hidden using the web interface extension command
rad-hidepassword, otherwise the password will be stored in plain in
the product configuration files on the disk.

Note: If MasterDbName is used, then DbName is mandatory.

DbName can be either the name of an existing ODBC source, or a
valid string for SQLDriverConnect, enclosed in square brackets.
Example (MS SQL Server)

[DRIVER={SQL Server};SERVER=<hostname>;UID=<user>;PWD=<pass>;
DATABASE=<db>[DRIVER={SQL Server};]

Example (DB2®)

[DRIVER={IBM DB2 ODBC DRIVER};SERVER=<hostname or IP>;DATABASE=<db>;
UID=<user>;PWD=<pass>;]

With this syntax, which is not natively recognized by DB2, the product
will automatically use or create a DB2 Node that matches <hostname
or IP>, and a catalog entry that matches <db>.

Additional fields (DB2 database)

Some optional parameters can be added to the db2 command:

¢ - REMOTEPORT: this parameter will be set to 50000 if not present
* - REMOTE_INSTANCE: this parameter will be added if present

* - SYSTEM: this parameter will be added if present

* - OSTYPE: this parameter will be added if present

Chapter 4. OS deployment server configuration 25

Example:

[DRIVER={IBM DB2 ODBC DRIVER};SERVER=srvkludge-1.rembo.private;
DATABASE=GwA;UID=administrator;PWD=poiuz;0STYPE=AIX; REMOTEPORT=1288;
REMOTE_INSTANCE=devtinv4; SYSTEM=rtxidb2;]

will generate the command db2 catalog tcpip node SRVKLDGR remote
srvkludge-1.rembo.private server 1288 REMOTE_INSTANCE devtinv4
SYSTEM rtxidb2 OSTYPE AIX

MasterIP

There are three choices for this field:

"

¢ "" (empty string) indicates that the server is a stand-alone server and
that no replication is necessary.

* "SELF" indicates that the server is a parent at the top of the

hierarchy. Some replication tasks are performed, but only in the
"downward" direction.

 IP address of the parent OS deployment server server which is used
for replication.

MasterDbName MasterDbUser MasterDbPass

Connection information for a second optional OS deployment server
database. These fields must be left empty if the field MasterIP is " or
"SELF". Otherwise, they must lead to the same database as the parent's
DbName. The password can be hidden using the web interface
extension command rad-hidepassword.

Note: When MasterDBName is included, DbName becomes

mandatory.

BinDir
This can only be used for radtcm.pak.
The directory where the wapmrpt.exe is located. Using forward slashes
as separators, for example: c:/temp

Description
This can only be used radtcm.pak.
The Tivoli endpoint identifier of this server.

Reporting
This can only be used for radtcm.pak.
A string of letters controlling which reporting to wapmrpt must be
performed by this OS deployment server. The letter u stands for
updates and activates the reporting of branch update events, expected
after the web interface extension command sync-validate .The letter d
stands for deployments and activates the reporting of deployment
events, expected after web interface extension command
rad-deployhost. The order of letters in the string is irrelevant. If the
string is empty, no reporting is done. The letter k stands for keep files
and can be used for debugging.

AutoSync

A string of letters controlling server replication. The order of letters in

26 Tivoli Provisioning Manager for Images: Reference Guide

the string is irrelevant. If the string is empty, no replication is done.
The letters have the following interpretation:

f

PollInterval

Replicates files: when this letter is present, the files on this OS
deployment server are copied from the parent periodically. File
replication is the mechanism to retrieve the "missing" files for
the objects stored in the local database of the server. The
SyncSchedule flag performs the same operation at a given time.
Therefore, the f flag must not be set if another mechanism is
used for file replication, for example: sync.pak or SyncSchedule.

Replicates OS configurations: when this letter is present, the OS
configurations in this server database are copied from the
parent's database periodically. This should be set if sync.pak is
used to synchronize the files, but the server has its own
database (for example: on spokes).

Replicates software modules: same as ¢, but for software
modules.

Replicates deployment schemes: same as ¢, but for deployment
schemes.

Replicates targets: when this letter is present, the targets in this
server's database will be copied to/from the parents's database
periodically. This should be set at the branch level, to provide
target management from the spokes.

Light target replication: when this letter is present, do not copy
parent's targets which are known to belong to a different
branch of theOS deployment servers hierarchy. Copy only new
targets and targets which have booted on this server, or one of
its children. With this letter, h is automatically added.

Replicates blacklist: when this letter is present, the hardware
compatibility blacklist is copied from the parent periodically.
The new values are unconditionally propagated to other
servers using the same DbName.

The interval in minutes between two server replications. The default
value is 1.

DebugLevel

The required global debug level for this server.

DB2BinDir

This can only be used for DB2

The directory where the command db2cmd is located. Using forward
slashes as separators, for example: c:/db2/bin The default location is
c:/Program Files/IBM/SQLLIB/BIN. It can be overriden globally for all
servers with a special comment line ;RBO;DB2_BIN_DIR;<path>, and also
individually for each server with this column.

SyncSchedule

You can use it only if the flag f in AutoSync and the sync.pak package
are not used. Replication occurs according to the timestamp of the
different servers. For example if in config.csv, the replication time is set

Chapter 4. OS deployment server configuration 27

to 9.00 PM for a level 2 server, the replication occurs at 9.00 PM of
level 2 server and not 9 PM of the parent server.

The schedule for file replication. Tells the server when it should copy
the files from its parent. This should not be set if another mechanism is
used for file replication, for example: sync.pak.

Example: synchronize once on 2006-02-22, at 3PM:
type=once;date=2006-2-22;time=15:00

Example: synchronize every day, at 3PM:
type=daily;period=1;time=15:00

Example: synchronize every week, every day except Thursday, at 3PM

("days" is a bit mask, where Monday=1, Tuesday=2, Wednesday=4,
Thursday=8, Friday=16, Saturday=32, Sunday=64):

type=weekly;period=1;days=119;time=15:00
Example: synchronize on the first day of each month, at 3PM:
type=monthly;day=1;time=15:00

If flag f is used in AutoSync, scheduling a file replication here is not
necessary.

SyncBandlim
This can only be used when sync.pak is not used

When SyncSchedule is used, SyncBandlim can be used to limit the
network bandwidth used for file replication. The syntax is a number
followed by a white space and one of "Mbits/s" or "Kbits/s". For
instance "15 Mbits/s" or "192 Kbits/s". It is also possible to give just
one integer, in this case the units are kilobytes per second.

APISecret
This can be used for the Java API, since version 5.1.0.2

This must be used for Virtual Image migration in a multiple server
environment, since version 7.1.1.0.

The password that must be supplied when connecting to this server
through the Java APL. Must be hidden using the web interface
extension command rad-hidepassword.

The same APISecret must be set on all Tivoli Provisioning Manager for
Images servers. It is used by servers and agents to authenticate during
virtual image migration operations.

APITrusted
This can only be used for the Java API, since version 5.1.0.3

The list of trusted targets that can use the Java API when there is no
APISecret. If APISecret is defined, this field is not used and any Java
target that knows the secret can create a new session. If APISecret is
empty or undefined, the server checks that the target IP address is in
this list before creating a new session. Addresses must be given in the
dotted notation (for example: 192.168.168.16), and separated by one
space character

TPMReporting
This can only be used for TPM 7.1 and Director 6.1

28 Tivoli Provisioning Manager for Images: Reference Guide

A string of letters controlling events reported to TPM. The order of
letters in the string is irrelevant. If the string is empty, no event is
reported. The letters have the following interpretation:

b bare-metal targets : when this letter is present, targets without
Description are announced to TPM. An attempt is made every time the
OS deployment server is restarted. Fields TPMUser, TPMPass,
TPMPort and TPMBinDir are required when this letter is present.

TPMUser
This can only be used for TPM 7.1 and Director 6.1

User name for thesoapcli command line.

TPMPass
This can only be used for TPM 7.1 and Director 6.1
Password for the soapcli command line, hidden in the same way as
APISecret.

TPMPort

This can only be used for TPM 7.1 and Director 6.1

HTTP port for thesoapcli command line. Defaults to 4080.
TPMBinDir

This can only be used for TPM 7.1 and Director 6.1

The directory where soapcli.cmd or soapcli.sh is located. Using
forward slashes as separators, c:/program files/ibm/director/tpm/
tools/soapclient

Mandatory fields
The only mandatory field in config.csv is HostName.

However, a typical configuration for a multidatabase architecture also includes
e DbName

* MasterIP

* MasterDbName

e AutoSync

Moreover, the fields DbUser DbPass MasterDbUser MasterDbPass are often
needed.

For a use with the JavaAP], a typical configuration contains only HostName and
APISecret.

Example
Typical settings for a large organization

HUB:

Single server at the top of the production servers hierarchy. Contains the
latest version of all the deployment objects but not of the targets for
scalability reasons.

Chapter 4. OS deployment server configuration 29

¢ C) DbName: name of an ODBC source that points to the database
"AutoDeployHUB"

* F) MasterIP: "SELF"

* G) MasterDbName: "', no master

"

e L) Reporting: ", no event reporting

* M) AutoSync: ", this server owns the up-to-date database

SPOKE:

Main management point for a large unit in the organization. Synchronizes

its deployment objects from the HUB. Stores target data for all the servers

in the list but doesn't propagate it upwards for scalability reasons.

¢ C) DbName: name of an ODBC source that points to the database
"AutoDeploySPOKE"

* F) MasterIP: HUB's IP address

* G) MasterDbName: name of an ODBC source that points to the database
"AutoDeployHUB"

* L) Reporting: "ud", this is the right place to report to TCM Tivoli
Provisioning Manager for Images plugin

* M) AutoSync: "csd" to synchronize deployment objects (with sync.pak),
"fcsd" to synchronize files as well (without sync.pak)

PROXY:

OS deployment server for a medium unit in the organization. Has its own
database to perform deployments even when not connected to the SPOKE.

¢ C) DbName: name of an ODBC source that points to the database
"AutoDeployPROXY"

* F) MasterIP: SPOKE's IP address

* G) MasterDbName: name of an ODBC source that points to the database
"AutoDeploySPOKE"

"

¢ L) Reporting: ", no event reporting

* M) AutoSync: "csdh" to synchronize deployment objects and all targets
(with sync.pak), "fcsdh" to synchronize files as well (without sync.pak),
"csdl”" or "fesdl" to synchronize only a subset of targets

BRANCH:

OS deployment server for a small unit in the organization. Requires good
connectivity with the PROXY.

¢ C) DbName: name of ODBC source that points to the database
"AutoDeployPROXY"
* F) MasterIP: PROXY's IP address

* G) MasterDbName: "', no DB replication is needed because we use the
same database as the PROXY

"

* L) Reporting: ", no event reporting

* M) AutoSync: " if file replication is done using sync.pak, f if Tivoli
Provisioning Manager for Images must synchronize files periodically

30 Tivoli Provisioning Manager for Images: Reference Guide

Parameter reference

Parameter reference contains syntax information on OS deployment server
parameters.

Global parameters

The following list provides detailed explanations of the parameters used in the
rembo.conf file and the web interface.

Backup

Name
Backup — IP address of backup server

Synopsis
Backup ip-addr

Location in the server configuration

* web interface > Server Parameters > Server configuration: Base
parameters

* rembo.conf: Beginning of the file

Description
This parameter defines the IP address of a backup server for this OS
deployment server. The backup server IP address is sent to all target
computers connected to this server. If this server fails, the targets
detect that the primary server has failed, and automatically switch to
the backup server.

Here are some considerations regarding the OS deployment server
running at the IP address specified by this parameter (the backup):

* The backup must be configured to use the same UDP ports as this
server for the NBP, FILE, MCAST and PCAST services (that is for all
specific services);

¢ Its file system must be strictly identical to the file system of this
server, so that boot agents can switch from one server to the other in
the middle of a file transfer;

* Ideally, the backup must be configured to answer DHCP discovers
and PXE discovers for the same targets as this server, but with a
higher delay (see (BootReplyDelay). This ensures that the
remote-target boots on the backup server on the next boot.

BaseDir

Name
BaseDir — Directory for all OS deployment server files

Synopsis
BaseDir " directory"
Location in the server configuration

* web interface > Server parameters > Server configuration: File access
module

* rembo.conf: Beginning of the file

Description
By default under Windows, BaseDir points to c:\Program
Files\Common Files\IBM Tivoli.

Chapter 4. OS deployment server configuration 31

You must set this parameter to the directory where you have installed
the OS deployment server executable program. If you are using the
Windows version the BaseDir parameter is automatically configured
during the setup process.

BaseDir contains a subdirectory named packages which holds the .pak
server extensions.

Note: Always use forward slashes (/) in all path names you enter in
the text-based configuration file.

Examples
BaseDir "c:/Program Files/Common Files/IBM Tivoli"
BaseDir "/usr/local/tpmfos"

BootDiscoveryAddress

Name
BootDiscoveryAddress — Multicast address used for PXE discovery
requests

Synopsis
BootDiscoveryAddress ip-addr

Location in the server configuration

* web interface > Server parameters > Server configuration: Boot
module

* rembo.conf: Beginning of the file

Description
If PXE multicast boot discovery is enabled on the OS deployment
server (see (BootNoMulticastDiscovery)), this option must be set to
the multicast IP address used by the remote-boot targets when
performing PXE discovery.

If this option is not set, Tivoli Provisioning Manager for Images uses
the IP address 232.2.0.1.If the OS deployment server is in the same
subnet as the DHCP server, PXE discovery is not required because the
remote-boot targets know that the PXE server is on the same computer
as the DHCP server (option 60 set to PXECTient). If the OS
deployment server and the DHCP server run on different computers,
but are on the same IP subnet, PXE discovery is still not required
because the OS deployment server intercepts DHCP requests and
provides PXE information at the DHCP stage. You only require PXE
discovery if the remote-boot targets are not on the same subnet as the
OS deployment server, or if your existing PXE infrastructure is already
setup for PXE discovery.

Example
BootDiscoveryAddress 232.5.6.7

BootDiscoveryPort

Name
BootDiscoveryPort — IP port used when listening to PXE discovery
requests

Synopsis
BootDiscoveryPort port

Location in the server configuration

32 Tivoli Provisioning Manager for Images: Reference Guide

* web interface > Server parameters > Server configuration: Boot
module

* rembo.conf: Beginning of the file

Description
This parameter must be set to the port used by remote-targets when
sending PXE boot requests (multicast boot discovery, or BINL
discovery). The default value works with PXE bootroms which have
not been modified, therefore there is no reason to change this value
unless you know what you are doing.

If this option is not set, Tivoli Provisioning Manager for Images uses
the IP port 4011.

Example
BootDiscoveryPort 5011

BootNoMulticastDiscovery

Name
BootNoMulticastDiscovery — Disables PXE multicast discovery
support

Synopsis
BootNoMulticastDiscovery yes/no

Location in the server configuration

* web interface > Server parameters > Server configuration: Boot
module

* rembo.conf: Beginning of the file

Description
If the parameter BootNoMulticastDiscovery (without argument) is
present in the configuration file (rembo.conf config), then PXE
multicast discovery is disabled on the server. The OS deployment
server does not answer PXE multicast packets received from
remote-boot targets.

PXE multicast discovery is used by remote-boot targets if your existing
PXE infrastructure is configured to use PXE discovery. Multicast
discovery is not needed if the remote-boot targets and the OS
deployment server are on the same subnet, because the targets use
other mechanisms to discover the OS deployment server (DHCP proxy,
or DHCP option 60).

If you know that you do not need PXE multicast discovery, you can
disable it by setting this parameter to true. This is suggested if you are
in a large company or institution where other PXE targets can be
configured to use multicast discovery on other subnets, but you do not
want your server to reply to these targets.

Example
BootNoMulticastDiscovery

BootReplyDelay

Name
BootReplyDelay — Sets the delay before answering discovery requests

Synopsis
BootReplyDelay secs

Chapter 4. OS deployment server configuration 33

Location in the server configuration

* web interface > Server parameters > Server configuration: Boot
module

e rembo.conf: Beginning of the file
Description
This parameter sets the number of seconds to wait before answering a

PXE discovery request (PXE discovery enabled), or a DHCP request
(ProxyDHCP enabled). The default value is 0 (no delay).

The only reason to delay a PXE reply is when two or more OS
deployment servers are configured to run on the same subnet, with the
same list of targets. The parent server can be configured with a delay
of 0 seconds (answer immediately), and other servers with a delay of 2
seconds. If the parent server fails, backup servers handle remote-boot
target requests.

Example
BootReplyDelay 2

DataDir

Name
DataDir — Directory for internal files

Synopsis
DataDir " path”
Location in the server configuration
* web interface > Not available
* rembo.conf: Beginning of the file
Description

The server uses the directory specified by DataDir to store its internal
files, in particular all the files stored on its file system.

You can use this parameter to specify a new directory for the internal
files of the server, for example if you want to store the server files on a
new storage device with more space, but you want to keep the
executable files and configuration files on the original location.

Note: You can specify the DataDir as the network driver disk by using
a UNC path.

All the files stored in the directory specified by DataDir must not be
modified, or the OS deployment server might not work correctly. If the
specified directory does not exists, the server tries to create it.

Examples
DataDir "/mnt/morespace/rembo"
DataDir "C:/TPMfOS"

DefaultAuthDomain

Name
DefaultAuthDomain — Default authentication domain

Synopsis
DefaultAuthDomain " domain"

Location in the server configuration
* web interface > :Not available

34 Tivoli Provisioning Manager for Images: Reference Guide

* rembo.conf: Beginning of the file

Description
This is the name of the default authentication domain to use when a
target sends an authentication request to the server to identify a user.
This name must match the name of an existing authentication domain
as defined in Authentication domains.
Example
DefaultAuthDomain "HTTP"

DefaultFileServer

Name
DefaultFileServer — Defines a new server for FILE services

Synopsis
DefaultFileServer ip-addr
Location in the server configuration
* web interface > Not available
* rembo.conf: Beginning of the file
Description
This parameter can be used to specify the default IP address of the
target serving the NETfs and MCAST protocols. If you want to use the

same OS deployment server for all services, you do not have to specify
this parameter.

The target defined by this parameter must be configured to use the
same network password (NetPassword) as the server containing this
parameter.

This parameter is applied to all the targets contained in the group.

Example
DefaultFileServer 172.16.8.9

DefaultGroup

Name
DefaultGroup — Default group for unknown targets

Synopsis
DefaultGroup " name"

Location in the server configuration
* web interface > OS deployment >Target Monitor: Default group
* rembo.conf: Beginning of the file

Description
This parameter defines the default administrative group for unknown
targets.

The "name " argument must be an existing administrative group.

Example
DefaultGroup "MyNewHosts"

DefaultLockOut

Name
DefaultLockOut — Locks peripherals on unknown targets

Chapter 4. OS deployment server configuration 35

Synopsis
DefaultLockOut [none] [, mouse [[, keys][, screen][, all]

Location in the server configuration
* web interface >OS deployment > Target Monitor: Default group
* rembo.conf: Beginning of the file

Description
Use this parameter to lock peripherals on the remote-boot
targetsduring the time Tivoli Provisioning Manager for Images is active
on the unknown target. You can for example lock the mouse or/and
the keyboard so that the user cannot interrupt an automatic image
restoration process.

Peripherals are automatically unlocked when Tivoli Provisioning
Manager for Images gives the control to the operating system (with a
HDBoot, LXBoot, RDBoot or DeviceBoot).

Example

DefaultLockOut keys, mouse
DefaultOptions

Name
DefaultOptions — Startup options for the remote target computer

Synopsis
DefaultOptions [admin] [, autoboot] [, KernelFree] [, nousb] [,
noautousb] [, novesa | [, noapm] [, unicast] [, noigmp2] [,
noudma | [, noprotpart | [, realmodedisk] [, realmodepxe | [,
routepxeirq]

Location in the server configuration
* web interface >OS deployment > Target Monitor: Default group
* rembo.conf: Beginning of the file

Description
Twelve different options can be set for targets. These options are used
when unknown targets run under Tivoli Provisioning Manager for
Images:

* Admin: forces the target to run in administrative mode.
Administrative mode adds options in the start menu on the target:
Interact, to run the interactive evaluator, and Purge cache to purge
the local disk cache. Additionally, functions defined in the admin.rbx
plugins are available (File Manager, TextEdit,...).

* Autoboot: tells the target to automatically reboot on unrecoverable
errors. Unrecoverable errors are low-level errors which cannot be
intercepted with the exception mechanisms. By default
unrecoverable errors are displayed on the screen and the computer
is halted. You can define the autoboot option if you want to reboot
on unrecoverable errors.

* KernelFree: defines how the OS deployment serverhandles the boot
of unknown targets. If the KernelFree value is set in the list of
DefaultOptions, targets boot in kernel-free mode. When you set
KernelFree, the following options are not applied: NoUSB, NoAutoUSB,
NoVESA, NoAPM, NoUDMA, NoProtPart, RealModeDisk, RealModePXE,
RoutePXEIRQ.

* NoUSB: disables USB devices on the remote-boot target.

36 Tivoli Provisioning Manager for Images: Reference Guide

* NoAutoUSB: enables USB devices only when non PS/2 connection is
detected.

* NoVESA: disables all the graphical interface on the remote-boot target.

* NoAPM: disables advanced power management on the remote-boot
target.

* Unicast: uses unicast instead of multicast when downloading files
from the OS deployment server.

* NoIGMP2: disables IGMP version 2 to force using IGMP version 1 on
the remote-boot target.

* NoUDMA: disables UltraDMA support for all IDE hard-disks on the
remote-boot target. This can solve problems on poorly designed
hardware or buggy chipsets, but at a high cost in terms of
performance.

* NoProtPart: disables ATA-5 features.

* RealModeDisk: disables enhanced disk access.

* RealModePXE: disables enhanced PXE access.

* RoutePXEIRQ: reroutes network IRQ separately from the disk
controller IRQ.

Example
DefaultOptions admin
DefaultPXEBootMode
Name

DefaultPXEBootMode — Selects default PXE boot behavior

Synopsis
DefaultPXEBootMode { normal | hdboot | ignore }

Location in the server configuration
 web interface >OS deployment > Target Monitor: Default group
* rembo.conf: Beginning of the file

Description
This option defines how the OS deployment server answers PXE boot
requests coming from unknown targets. When mode is normal, the OS
deployment server processes the boot request. When mode is hdboot, the
OS deployment server tells the unknown target to immediately boot on the
hard disk. When mode is ignore, the OS deployment server does not
answer the boot request, thus giving the opportunity for another PXE
server to answer.

Example
DefaultPXEBootMode normal
DefaultResolution
Name
DefaultResolution — Default screen resolution for new targets
Synopsis

DefaultResolution " path "

Location in the server configuration
* web interface > Not available
s rembo.conf: Beginning of the file

Chapter 4. OS deployment server configuration 37

Description
This parameter defines the default screen resolution for target on a
new target.
Example
DefaultResolution "800x600"

DisableBOOT

Name
DisableBOOT — Disables PXE services

Synopsis
DisableBOOT
Location in the server configuration

 web interface > Server parameters > Server configuration: Boot
module

* rembo.conf: Beginning of the file

Description
Use this option to disable the PXE component of the OS deployment
server. Targets are not able to boot on PXE anymore if this option is
included in the configuration file. Use this option if you want to use

the OS deployment server for remote file access only (for example
when setting up the server).

Not included in the default configuration.

Example
Disab1eBOOT

DisableContextualMenu

Name
DisableContextualMenu — Disables the specific contextual menus in
the web interface

Synopsis
DisableContextualMenu
Location in the server configuration

* web interface > Server Parameters >server configuration: web
interface

* rembo.conf: Beginning of the file

Description
Add this option to the configuration file if you want to disable the
specific contextual menus in the web interface. This can be useful if

you want access to the regular contextual menu of your Web browser,
in order, for example, to view the source page.

Not included in the default configuration.

Example
DisableContextualMenu

DisableCookies
This parameter is deprecated from version 7.1.1.3 onwards. The web
interface does not use cookies anymore.

DisableDHCPProxy

38 Tivoli Provisioning Manager for Images: Reference Guide

Name
DisableDHCPProxy — Disables answers to DHCP discovers
(DHCPProxy)

Synopsis
DisableDHCPProxy yes/no

Note: In rembo.conf configuration, the keyword Disab1eDHCPProxy is
used without argument. If the keyword is present, it is assumed to be
set to the value yes automatically.

Location in the server configuration

* web interface > Server parameters > Server configuration: Boot
module

* rembo.conf: Beginning of the file

Description
If this parameter is set to yes, the OS deployment server does not send
PXE replies to DHCPDISCOVER packets sent by remote-boot targets.
You can set this parameter to yes if you do not need this feature

because either the DHCP server and the OS deployment server are on
the same target, or you are using PXE multicast discovery.

The default value is false (that is DHCP Proxy is enabled by default).

Example
DisableDHCPProxy

DisableDragAndDrop

Name
DisableDragAndDrop — Disables the drag-and.drop feature of the web
interface

Synopsis
DisableDragAndDrop
Location in the server configuration

* web interface > Server parameters > Server configuration: web
interface

* rembo.conf: Beginning of the file

Description
Add this option to the configuration file if you want to disable the
drag-and-drop feature of the web interface. This can be useful in case
of severe incompatibility with unsupported browsers. Note that the
feature in known to work on most common browsers.

Not included in the default configuration.

Example
DisableDragAndDrop

DisableFILE

Name
DisableFILE — Disables FILE components of the OS deployment server

Synopsis
DisableFILE

Location in the server configuration

Chapter 4. OS deployment server configuration 39

* web interface > Server parameters > Server configuration: File access
s rembo.conf: Beginning of the file

Description
Add this option to the configuration file if you want to disable the

FILE component of the OS deployment server. This can be useful if
you are accessing the server from TCP targets.

Note: Do not set this option if targets are booting on this OS
deployment server. If you set DisableFile, you must also set
DisableTCP

Not included in the default configuration.

Example
DisableFILE

DisableHTTP

Name
DisableHTTP — Disables the console

Synopsis
DisableHTTP

Location in the server configuration
* web interface > Server parameters > Server configuration: web
interface
* rembo.conf: Beginning of the file

Description
Add this option to the configuration file if you want to disable the
HTTP component of the OS deployment server, that is the web
interface. Disabling HTTP is not recommended as it forces you to run
the server in command-line only. If you set DisabTeHTTP, you must run
the -c command line option to change server parameters.

Note: A full server restart is necessary when this parameter is
modified.

Not included in the default configuration.

Example
DisableHTTP
DisableHTTPOptim
Name

DisableHTTPOptim — Disables the web interface

Synopsis
DisableHTTPOptim
Location in the server configuration

* web interface > Server parameters > Server configuration:
deployment servers

* rembo.conf: Beginning of the file
Description
Add this option to the configuration file if you want to prevent the

web interface to group JavaScript, stylesheet, and image files into large
files to reduce HTTP traffic.

40 Tivoli Provisioning Manager for Images: Reference Guide

Note: If you are creating console pages, you must set this parameter
to disable optimization.

Not included in the default configuration.

Example
DisableHTTPOptim
Disable]SDropDown
Name

Disable]SDropDown — Disables JavaScript menus in the web interface
Synopsis

Disable]SDropDown
Location in the server configuration

* web interface > Server parameters > Server configuration: web
interface

* rembo.conf: Beginning of the file

Description
Add this option to the configuration file if you want to disable
enhanced menus in the web interface, and use standard drop-down
selectors instead. Note that standard drop-down selectors do not

respect DHMTL layers under Internet Explorer, resulting in strange
effects.

Not included in the default configuration.

Example
DisabTeJdSDropDown

DisableNBP

Name
DisableNBP — Disables NBP services

Synopsis
DisableNBP
Location in the server configuration

* web interface > Server parameters > Server configuration: Network
boot module

* rembo.conf: Beginning of the file

Description
Including this option in the configuration file causes the NBP
component of the OS deployment server to stop answering requests
coming on the NBP port. Do not set this option if your server is used
by targets.

Not included in the default configuration.

Example
DisableNBP

DisableSSL
DisableSSL — Disables SSL encryption

Synopsis
DisableSSL

Chapter 4. OS deployment server configuration 41

Location in the server configuration

* web interface > Server parameters > Server configuration: web
interface

e rembo.conf: Beginning of the file
Description
Add this option to the configuration file if you want to disable the SSL

encryption and use unencrypted HTTP connections. This can be useful
if you want a faster download time, but it is not as safe.

Note: A full server restart is necessary when this parameter is
modified.
Not included in the default configuration.

Example
DisableSSL

DisableTCP

Name
DisableTCP — Disables TCP services

Synopsis
DisableTCP
Location in the server configuration
* web interface > Server parameters > Server configuration: File access
* rembo.conf: Beginning of the file
Description
This option disables the TCP component of the OS deployment server.

You can include this option with caution if you are not using server
replication

Note: Do not set this option if targets are booting on this server. If you
set Disab1eTCP, you must also set DisableFile.

Not included in the default configuration.

Example
DisableTCP
FileMCASTAddress
Name

FileMCASTAddress — Multicast address used for the MCAST protocol

Synopsis
FileMCASTAddress ip-addr:port

FileMCASTAddrCount number

Location in the server configuration

* web interface > Server parameters > Server configuration: Not
available

* rembo.conf: Beginning of the file

Description
Fi1eMCASTAddress defines the destination multicast address and
destination port used by the OS deployment server when sending

42 Tivoli Provisioning Manager for Images: Reference Guide

multicast UDP datagram to targets requesting a file with the MCAST
protocol. The default value is 239.2.0.1:10000.

Fi1eMCASTAddrCount defines the upper limit of the multicast address
range used by the server (that is the number of different multicast
addresses used). When combined with Fi1eMCASTAddress, this
parameter can control the lower and upper limits of the range of
multicast addresses used by the server. The default value is 256 (that is
use no more than 256 multicast addresses).

The MCAST protocol is used by targets to download large files from
the server. This protocol is a proprietary protocol made using multicast
UDP.

Example
To force the OS deployment server to use 1000 multicast addresses
starting at 232.1.1.1, use:

Fi1eMCASTAddress 232.1.1.1
Fi1eMCASTAddrCount 1000

FileMCASTEncrypt

Name
FileMCASTEncrypt — Encrypts MCAST datagrams

Synopsis
FileMCASTEncrypt
Location in the server configuration

* web interface > Server parameters > Server configuration: Not
available

* rembo.conf: Beginning of the file
Description
If this parameter is present in a rembo.conf configuration file, or set to

yes in the web interface, MCAST datagrams exchanged between the
OS deployment server and the remote-boot targets are encrypted.

The MCAST protocol is used by targets to download large files from
the server. This protocol is a proprietary protocol made using multicast
UDP.

MCAST datagrams are not encrypted by default.

Example
FiTeMCASTEncrypt

FileServerPort

Name
FileServerPort — Port used on the server for NETfs and MCAST
requests

Synopsis
FileServerPort port
Location in the server configuration

* web interface > Server parameters > Server configuration: File access
module

* rembo.conf: Beginning of the file

Chapter 4. OS deployment server configuration 43

Description
This value is used by the OS deployment server as the port for all
file-related requests sent by targets. File-related requests include NETfs
requests and MCAST requests.

The default value is 4013. The value of this parameter is sent to targets
during the NBP phase of the boot process. If you change this
parameter, targets automatically use the new value on next boot.

Example
FileServerPort 5013
HTTPAdminName
Name

HTTPAdminName — User name of the main administrator of the OS
deployment server

Synopsis
HTTPAdminName " username "

Location in the server configuration

* web interface > Server parameters > Server configuration: HTTP
Console Security: Base Parameters

* rembo.conf: Beginning of file

Description
This is the superuser name intended to be used only by the main OS
deployment server administrator, in order to get access to the all
configuration parameters of the server. There is only one superuser
login.

Example
HTTPAdminName "Admin"

HTTPRole

Name
HTTPRole — Security roles with access to the web interface console

Synopsis
HTTPRole "RoleName"{ Members "membername" [,...] Allowpages
"pagename" [,...] Allowgroups "groupname" [,...] Policies
"policyname" [,...] }

Location in the server configuration

* web interface > Server parameters > Server configuration: HTTP
Console Security: Security Role list

* rembo.conf: After global parameters

Description
An HTTP role allows specific members to access predefined pages on
the web interface, as well as preselected administrative groups. One
can also define security policies. Parameters are a single string or a list
of strings separated by commas. The star * means all, without
restriction.

Role members can be either individuals or groups defined by the
authentication authority. An individual, who does not belong to any
role, trying to log on to the web interface is denied access to the
console. An individual, belonging to several roles, cumulates the page
access rights and administrative group access rights of all the roles

44 Tivoli Provisioning Manager for Images: Reference Guide

s/he belongs to. Security policies are also cumulative, resulting in a
more restrictive policy when an individual belongs to several roles.
The security policies include:
* CONF_RO to deny changes to the server configuration
¢ HOST_RO to deny addition and removal of targets
To use HTTPRole, you must first have set a local authentication domain
named HTTP with ()AuthLocalDomain.

Example

HTTPRole "RestrictedAccess" {
Members "rembo"
AlTowpages "="
AllowGroups "locall", "Tocal2"
Policies "HOST_RO"

}

HTTPServerPort

Name
HTTPServerPort — TCP port for HTTP requests

Synopsis
HTTPServerPort port
Location in the server configuration

* web interface > Server parameters > Server configuration: web
interface

e rembo.conf: Beginning of the file

Description
This is the TCP port used by the web interface when listening for
unencrypted HTTP requests. You can set this parameter to 8080 if you
want the web interface to be accessible by typing the server host name
in your Web browser. The OS deployment server always listens on this
port even if connections are encrypted, in order to redirect
unencrypted connections to the encrypted TCP port.

Note: A full server restart is necessary when this parameter is
modified.
Example
HTTPServerPort 8080

HTTPSServerPort

Name
HTTPSServerPort — TCP port for encrypted HTTP requests (SSL)

Synopsis
HTTPSServerPort port
Location in the server configuration

* web interface > Server parameters > Server configuration: web
interface

* rembo.conf: Beginning of the file

Description
This is the TCP port used by the web interface when listening for
encrypted HTTP requests. You can set this parameter to 443 if you

Chapter 4. OS deployment server configuration 45

want the web interface to be accessible by typing the server host name
in your Web browser, prefixed with the https URL syntax.

Note: A full server restart is necessary when this parameter is
modified.

Example
HTTPSServerPort 443

HTTPSessionTimeout

Name
HTTPSessionTimeout — Time in minutes before a web interface
session expires.

Synopsis
HTTPSessionTimeout minutes

Location in the server configuration

* web interface > Server parameters > Server configuration: web
interface

* rembo.conf: Beginning of the file

Description
This is the inactivity timeout (in minutes) before web interface users
are automatically logged out. A typical safe value is 5 minutes, but you
might want to make it longer if you receive the message Session timed
out too often and are sure that you will never forget to log out when
you leave your computer.

Example
HTTPSessionTimeout 30

Interfaces

Name
Interfaces — List of network interfaces used by the OS deployment
server

Synopsis
Interfaces ip-addrl [ip-addr2] [ip-addr3...]

Location in the server configuration

* web interface > Server parameters > Server configuration: Base
parameters

* rembo.conf: Beginning of the file

Description
You will find this option very useful if you are running on a
multihomed computer (that is a target with more than one network
card, or with a network card and a dial-up adapter).

This option lets you specify the list of network interfaces used by the
OS deployment server when receiving and sending packets to targets.
If you leave this option unset, the server can use one or more
interfaces (usually all of them).

You must specify a list of IP addresses to use. Each IP address must
correspond to the IP address to one of the network interfaces of the OS
deployment server. The list must contain at least one address.

46 Tivoli Provisioning Manager for Images: Reference Guide

Note: You are strongly encouraged to set this option if your computer
is multihomed. Otherwise the server might not receive the network
packets not originating from its official interface.

Examples
Interfaces 192.168.1.1
Interfaces 192.168.1.1 192.168.10.1 10.1.1.1
MaxLogSize
Name

MaxLogSize — Maximum size of log files created by the OS
deployment server

Synopsis
MaxLogSize size_in_bytes

Location in the server configuration

* web interface > Server parameters > Server configuration: Base
Parameters

* rembo.conf: Beginning of the file

Description
This parameter can be used to limit the size of the log file generated
by the OS deployment server. The maximal log size must be specified
in bytes, and apply to all the log files created by the server (file, nbp,

http, tcp, VM, and boot). If you do not specify this parameter, or set
the limit to 0, then log files are not limited in size.

Example

To limit the size of logs to 10MB:
MaxLogSize 10000000

To disable log size limit:
MaxLogSize 0

MaxPCASTSessions

Name
MaxPCASTSessions — Maximum number of simultaneous PCAST
sessions

Synopsis
MaxPCASTSessions number
Location in the server configuration
* web interface > :Not available
s rembo.conf: Beginning of the file
Description
This is the maximum number of PCAST sessions that the OS
deployment server accepts simultaneously. This parameter is mostly

relevant if the server is running in UNICAST mode and deploying a
group with UNICAST setting.

The default value is 8. Because each session uses around 16MB of
server memory, higher values must be avoided on servers with no
more than 256Mb.

Example
MaxPCASTSessions 8

Chapter 4. OS deployment server configuration 47

MaxTFTPSegSize

Name
MaxTFIPSegSize — Maximum size of a TFTP segment

Synopsis
MaxTFTPSegSize number
Location in the server configuration

* web interface > Server parameters > Server configuration: Boot
module

* rembo.conf: Beginning of the file

Description
This is the maximum size of TFTP segment in bytes. This parameter
can be used to reduce the size of packets sent by the OS deployment

server if required by the underlying network. This may be useful for
instance when network traffic is encrypted by routers.

The default value is 512.

Example
MaxTFTPSegSize 256

MTFTPClients

Name
MTFTPClients — The destination address and port used by the MTFTP
server

Synopsis
MTFTPClients ip-addr [: port]

Location in the server configuration

* web interface > Server parameters > Server configuration: Boot
module

* rembo.conf: Beginning of the file

Description
This is the destination IP address and port used by the server when
sending multicast MTFTP datagrams to boot agents. The IP address
must be a valid multicast address and must match the address sent to
the target during the DHCP phase. If the deployment engine has
received its PXE parameters from the OS deployment server during the
DHCP phase, this address is automatically included so that the
deployment engine always uses the same address/port as the server.

The default value is 232.1.0.1:8500.

Example
MTFTPCTients 232.8.7.6

MTFTPPort

Name
MTFTPPort — The port used by the MTFTP server

Synopsis
MTFTPPort port

Location in the server configuration
* web interface > server configuration: Boot module
* rembo.conf: Beginning of the file

48 Tivoli Provisioning Manager for Images: Reference Guide

Description
This is the port used by the server when listening to MTFTP requests.
If the remote-boot targets are using the OS deployment server to get
their PXE parameters, this value is sent in the DHCP/PXE reply so
that the remote-boot target always uses the correct port.

The default value is 4015.

Example
MTFTPPort 5015
MTFTPStartDelay
Name

MTFTPStartDelay — The initial delay on target computers before
sending first MTFTP request

Synopsis
MTFTPStartDelay secs

Location in the server configuration

* web interface > Server parameters > Server configuration: Boot
Module

* rembo.conf: Beginning of the file

Description
This is the delay used by remote-boot targets before sending the first
MTEFTP request to the OS deployment server. This delay is used by the
target to listen to an existing MTFTP transfer. If the MTFTP file they
are about to request is already being sent by the server on the
multicast address, then the target does not request the file and listens
to the packets. The longer this delay is, the more probability you have
that many targets reuse the same MTFTP channel instead of requesting
the file. But if you want to have a fast boot process, you must set this
value to 1 (the minimum value).

The default value is 2 (seconds).

Example
MTFTPStartDelay 1

NBPServerPort

Name
NBPServerPort — Port used on the OS deployment server for NBP
requests

Synopsis
NBPServerPort port

Location in the server configuration

* web interface > Server parameters > Server configuration: Network
Boot Module

* rembo.conf: Beginning of the file

Description
This value is used by the OS deployment server as the port for all NBP
requests sent by remote-boot targets. NBP is a protocol used by target
computers to get their startup parameters (startup page, groupname,...)
and to send authentication requests to the server.

Chapter 4. OS deployment server configuration 49

The default value is 4012. The value of this parameter is sent to targets
as part of the last MTFTP packet when the server sends the initial part
to the PXE bootrom. If you change this parameter, targets
automatically use the new value on next boot.

Example
NBPServerPort 5012

NetPassword

Name
NetPassword — Network password for remote file access

Synopsis
NetPassword " password '

Location in the server configuration

* web interface > Server Parameters > HTTP Console Security: Base
parameters

* rembo.conf: Beginning of the file

Description
This is the password used by the OS deployment server to accept or
deny network requests coming from a target, the web interface or
NetClnt.

You must change this option when you install a new OS deployment
server and select a password to protect your files against unpermitted
access. If you are using the Windows version of the server, you are
asked to enter the password during the setup.

If you are using the web interface, or NetClnt to access the files stored
in your OS deployment server, the password you enter in NetClnt (or
the web interface) must match the word set in NetPassword.

Note: This password is an important piece of your security. If you
require optimal security, you are strongly encouraged to protect the
configuration of the server. By default, this file is created by the
installer and the password is stored encrypted in it.
Example
NetPassword "mypassword"

NetworkShare

Name
NetworkShare — UNC path of the shared partition directory of the OS
deployment server.

Synopsis
NetworkShare "path "
Location in the server configuration

* web interface > Server parameters > Server configuration: Network
share module

* server.ini Beginning of the file
Description
This is the path of the shared partition directory of the OS deployment

server. This parameter can be used to increase the deployment speed of
some operating systems. The target computer access the network share

50 Tivoli Provisioning Manager for Images: Reference Guide

directly to retrieve the necessary installation files. You need to have set
the partition as read-only for the user entitled to access the network
share.
Example
NetworkShare "provisioningServer/partition"

NetworkUser

Name
NetworkUser — name of a user entitled to access the network share.

Synopsis
NetworkUser "name "
Location in the server configuration

* web interface > Server parameters > Server configuration: Network
share module

* rembo.conf: Beginning of the file

Description
The name of the user entitled to access the network share, which is
given in NetworkShare. If the user is part of a domains, you must use
the syntax Domain/User. This user name is used by the targetcomputer
to access the network share on the OS deployment server.

Example

NetworkUser "ClientComputer"
NetworkPasswd

Name
NetworkPasswd — Network password used by the target computer to
access the network share

Synopsis
NetworkPasswd "password "
Location in the server configuration

* web interface > > Server parameters > Server configuration: Network
share module

* rembo.conf: Beginning of the file

Description
This is the password used by the target computer to access the
network share located on the server, using the NetworkUser user name.
The password is stored in the rembo.conf file.

Example

NetworkPasswd "clientPassword"
TCPServerPort

Name
TCPServerPort — Defines the TCP port used

Synopsis
TCPServerPort port

Location in the server configuration

* web interface > Server Parameters > HTTP Console Security: File
access Module

Chapter 4. OS deployment server configuration 51

* rembo.conf: Beginning of the file

Description
This option defines the TCP port used by the TCP component of the
OS deployment server when listening to requests coming from other
servers.

The default value is 4013

Example
TCPServerPort 2048

Authentication domains

The following information details the authentication domain references.

AuthLocalDomain
AuthLocalDomain

Name
AuthLocalDomain — Local authentication domain

Synopsis
AuthLocalDomain

AuthLocalDomain { UserGroup "group" }

Location in the 0S configuration
» web interface: Predefined channels/Authetication domain
* rembo.conf: After global parameters

Description
A local domain uses the server local user database.

On UNIX servers, if PAM is correctly configured, a local domain uses
PAM to authenticate users against any PAM-supported server
(including LDAP, Smb, and so on).

Attention: Do not forget to configure PAM if you wan to use it.

Example

AuthLocalDomain {
UserGroup "rembousers"
}

AuthNTDomain
AuthLocalDomain

Name
AuthLocalDomain — Remote authentication domain

Synopsis

AuthNTDomain { AuthServerName "hostname" UserGroup "group" }
Location in the 0S configuration

» web interface: Predefined channels/Authetication domain

* rembo.conf: After global parameters
Description

A Remote NT domain (supported on Windows platform only) gets
users from a given Windows server, for example a domain PDC.

52 Tivoli Provisioning Manager for Images: Reference Guide

Example

AuthNTDomain {
AuthServerName "domain-pdc"
UserGroup "rembousers"

}

AuthRadiusDomain
AuthLocalDomain

Name
AuthRadiusDomain — Radius authentication domain
Synopsis
AuthRadiusDomain { AuthServerAddress ip-addr RadiusSecret
"secret" }
Location in the 0S configuration
» web interface: Predefined channels/Authetication domain
* rembo.conf: After global parameters
Description
A Remote Radius domain gets the user list from a Radius compatible
server.
Example

AuthRadiusDomain {
AuthServerAddress 192.168.1.15
RadiusSecret "testingl23"

TCP tunnels

The following information details the TCP Tunnel references.

Remotetarget
Name Remotetarget — Host name or IP address of remote TCP target

Synopsis
RemoteHost "target"

Location in the OS configuration
» web interface: Predefined channels/TCP tunnels
* rembo.conf: After global parameters

Description
RemoteHost is a string representing the TCP remote targetto contact when a
target opens this TCP tunnel. You can either specify a host name or an IP
address for this parameter. Note that you need to use double quotation
marks(") around the host name or IP address if you are using rembo.conf.

Examples

TCPTunnel finger {
RemoteHost "finger.company.com"
RemotePort 79

}

TCPTunnel O0DBC {

RemoteHost "127.0.0.1"
RemotePort 2020

Chapter 4. OS deployment server configuration 53

RemotePort

Name RemotePort — Numeric TCP port of remote connection

Synopsis
RemotePort port

Location in the OS configuration
» web interface: Predefined channels/TCP tunnels
 rembo.conf: After global parameters

Description
RemotePort is a number representing the TCP port to connect to when a

target opens this TCP tunnel. You can get the complete list of valid port
numbers in the file /etc/services on any UNIX computer, or in the file
/system32/drivers/etc/services on a Windows computer.

Examples
TCPTunnel finger {
RemoteHost "finger.company.com"
RemotePort 79

}
TCPTunnel O0DBC {

RemoteHost "127.0.0.1"
RemotePort 2020

54 Tivoli Provisioning Manager for Images: Reference Guide

Chapter 5. OS deployment object parameters

This section contains information on the parameters of various OS deployment
objects.

Target parameters and details

To view information on target parameters, go to Server > OS deployment > Target
Monitor. Double-click on a target to view its details.

General target information
This section contains information used to identify the target, such as the
serial number, the UUID and the MAC address (also called the NIC
hardware address). It also contains the host name and a textual description
for the computer and its hardware model name (only valid after a
hardware inventory, during deployment). You can enter the name of your
organization and an administrative password. You can also configure the
time zone used by the operating system, and the locale. You can also
decide to enable the IPv6 protocol.

Note: WM Setting Enable IPv6 support to false for
Windows or Linux operating system disables the IPv6 kernel module even
if, for some administrative tools, it might still appear enabled.

Common networking information and Advanced network settings
This section contains information used to configure the networking part of
the operating system. Common networking information contains
information that is compatible with earlier versions. Advanced network
settings allows you to specify several interfaces for your target. A link in
this section allows you to switch back and forth between the two modes.

Note:

* When switching back to basic IP settings mode, all manually created
interfaces are lost.

* If your target has more than one network adapters, use Advanced
network settings. Using Common networking information can result in
incorrect values at deployment time.

¢ Common networking information

— In the TCP/IP settings section, you can set the TCP/IP mode of the
target being deployed. The default value for TCP/IP settings is
Undefined, use configuration parameters. TCP/IP parameters can be
set to use DHCP if DHCP is supported on the end-user's network. If
the target has to be configured with a fixed IP address, TCP/IP
settings has to be set to either Static IP, import from DHCP server or
Static, manual. In the last case, you need to switch to Advanced IP
settings mode to specify the value of the static IP address.

Note: Option Undefined, use configuration parameters is

incompatible with option IP, Netmask and Gateway defined in target
in the OS configuration.

© Copyright IBM Corp. 2014 55

Note: You cannot import DHCP settings on PowerPC and SPARC
targets. Therefore, you must not use Static, import from DHCP
server on these types of targets.

— Default gateway, DNS servers 1 to 3, and DNS domain are some of
the advanced TCP/IP parameters which can be entered manually if
the TCP/IP mode above is set to manual.

Note: The value of DNS domain is not used in Windows
Vista/2008/7/2012 deployments.

— The Domain Suffix Search Order defines the order in which domains
are searched for target information.

— The last two fields are the WINS servers used for resolving a name.

Note:

— Any value provided in the OS configuration overrides information
entered at the target level.

— Values provided in the fields following TCP/IP settings are
overridden by DHCP if DHCP provides any value. However, values
entered and visible in these fields are used if DHCP does not provide
these values, independently of the value of TCP/IP settings.

* Advanced network settings

In this mode, you get an additional link on each interface, enabling you
to remove the current interface. On the most recently created interface,
you have a link allowing you to set yet another new interface.

After clicking on Edit, you get additional fields on top of the ones
described for the Common networking information section.

— NIC Device, which is retrieved by theOS deployment server.
— The MAC address, provided when the interface was created.
— A connection name.

You can now change the IP address, the subnet mask, and the other
fields, if TCP/IP settings is set to Static, manual..

Note:

— Any value provided in the OS configuration overrides information
entered at the target level.

— Values provided in the fields following TCP/IP settings are
overridden by DHCP if DHCP provides any value. However, values
entered and visible in these fields are used if DHCP does not provide
these values, independently of the value of TCP/IP settings.

Windows-specific information
Contains Windows-specific information used in the deployment:

¢ Windows product key is used to set the product key of your operating
system. If you have a special license with Microsoft, and you have one
single product key for all your computers, it is more convenient to set
the product key as a fixed value in the OS configuration you are
deploying on these targets, rather than setting the product manually for
each target.

¢ If the computer is part of a workgroup, the field network type must be
set to Stay in a workgroup. If the computer is part of a Windows NT
domain, the network type must be set to either Join a Windows domain

56 Tivoli Provisioning Manager for Images: Reference Guide

during deployment, or Join a Windows domain on-site, that is the first
time the target boots after the deployment has been completed
successfully.

In Workgroup name, you can enter the workgroup or domain name to
join.

The domain administrator name and password corresponds to the user
name and password to use to join the computer to the Windows NT
domain. This is not used if the computer is configured to run in a
workgroup.

You can also configure video parameters such as horizontal and vertical
resolution, the color depth, and the vertical refresh rate in Hertz. Typical
values are 1024, 768, 32 bpp, and 60 Hz. These fields are not mandatory.

It is also possible to enter an administrator name for your target.

Note: If a fixed property field is left empty, the value currently on the
target is not altered by deployment. This is of particular importance for the
administrator name, as an empty administrator name field does not mean
that the administrator name will be null on the deployed target. The value
of the administrator name must be checked in case of user login trouble.

UNIX-specific information
Contains UNIX-specific information used in the deployment:

You must give a name resolution method. Select the type of service to
use to convert target names to IP addresses (and vice-versa).

Note: Some name resolution services might not be supported on all
Linux distributions.

If you are using NIS/NIS+, enter the name and IP address of the NIS
server, in the form name(ipaddress). If you are using LDAP, enter the IP
address of the LDAP profile server. For DNS, leave this field empty
(DNS servers are specified in the standard IP information panel).

If you are using LDAP, provide the name of the LDAP profile to use.

Kerberos is a standard way of ensuring network security in a UNIX
environment. To use Kerberos, you must first configure a Kerberos
server, providing security tokens for its realm. Then you can enter
Kerberos parameters to automatically join newly deployed computers to
your Kerberos realm. The Kerberos administration server is the central
repository for managing principals (targets, services, and so on) in the
Kerberos environment.

You must provide one to three key distribution centers that provides
authentication tokens when a secured operation has to be performed.

If you want to replicate the clock of the deployed targets to a reference
server using the NTP protocol, enter the server IP address or target
name.

For Solaris, you might configure the default terminal emulation to use
(see /usr/share/1ib/terminfo for possible values). The default is
sun-cmd.

User details

You can configure the registered owner of your operating system (valid for
Windows operating systems) in this section. Enter the full name and the
organization for the registered owner of the operating system.

Chapter 5. OS deployment object parameters 57

You can also enter a user login name and a user domain name if you have
selected the following options for the OS configuration you are deploying
on this target:

* Add domain user to Tocal admin group (uses the user login name and
domain name to build the domain user name)

* Create a local account for the user (uses the user login name to
determine the local account name to create)

You can enter the values of the site-specific database fields as well. These
values are used to store site-specific data, such as the localization of a PC
or the name of an application server. These values are then be used during
deployment when working with .ini updates packages.

Boot settings

The boot settings section provides information about the last known PXE
OS deployment servers, on the PXE boot mode, on boot engine options,
and on human interface locking.

* PXE boot mode Consists of the following suboptions:
— Use alternate PXE server
— Boot on hard-disk
— Boot on hard-disk if idle
Set Use alternate PXE server if you do not want the remote-boot target
to boot on the OS deployment server but want to force it to search for
another PXE server. Set Boot on hard-disk to force the target to boot on
its hard-disk. Set Boot on hard-disk if idle to force the target to boot

on its hard-disk only if the target is idle and there is no pending task.
For redeployment, Boot on hard-disk if idle must not be set.

* Deployment Engine options Consists of the following sub-options:
— Reboot on unrecoverable errors
— Disable USB
— Disable Auto USB
— Disable graphic interface
— Disable APM
— Disable multicast
— Disable IGMP version 2
— Disable Ultra-DMA
— Disable ATA-5 feature
— Disable enhanced disk access
— Disable enhanced PXE access
— Try to optimize IRQ
* Human interface locking options Consists of the following suboptions:
— Disable mouse
— Disable keyboard
— Disable screen
You can use this parameter to lock a specific peripheral during the time
the deployment engine is active on the remote-boot target.
* Boot engine options Consists of ten self-explanatory sub-options:

— Use kernel-free flow If you set this option, you cannot set any
additional boot option.

58 Tivoli Provisioning Manager for Images: Reference Guide

— Reboot on unrecoverable errors
— Disable USB
— Disable Auto USB
— Disable graphic interface
— Disable APM
— Disable multicast
— Disable IGMP version 2
— Disable Ultra-DMA
— Disable ATA-5 feature
— Disable enhanced disk access
— Disable enhanced PXE access
— Try to optimize IRQ
* User interface locking options Consists of the following suboptions:
— Disable mouse
— Disable keyboard
— Disable screen
You can use this parameter to lock a specific peripheral during the time
the deployment engine is active on the remote-boot target.

* Boot redirection server and Alternative redirection server lets you
specify one or two servers to which PXE requests from the target are
automatically redirected, without needing to modify DHCP options.

Note: The option Use kernel free flow is automatically checked for UEFI
targets.

Hardware details

If the target has been deployed at least once, and if the deployment
scheme used for the deployment was configured to collect hardware
information, then the Target details page shows information about
hardware installed in the computer.

CPU, Memory and Disks provides information about the processor, the
amount of main memory (RAM) and the size of the hard-disks found.

Note: This information is also available on Windows hypervisors, but not
on Linux ones.

PCI devices provides a list of all the PCI devices found on the computer.

You can remotely turn on and off your targets using the Switch on and
Switch off buttons at the bottom of the Target details page. Every time a
wizard launches a task, it asks you for switching on the target using the
Management Interface Parameter identifier.

Inventory

You can run an inventory of the target machine containing information on
CPU, memory, disks, and PCI devices. Depending on the booting mode,
UEFI or BIOS, the inventory run on a machine can have some differences,
for example on ESXi 5.0 guests.

Chapter 5. OS deployment object parameters 59

OS configuration parameters

The OS configuration parameters are divided in the web interface along several
tabs.

General
This tab is further divided in to OS deployment and General settings.

The OS deployment section contains operating system information including an
operating system version, its architecture, its language, the root of the system
installation and boot parameters.

In the OS deployment section, you can also specify (for a multi-partition image)
partitions that must be excluded from one-time deployment and redeployment. In
the text fields, enter the number of the partitions you want to exclude, keeping in
mind that partitions with numbers 1 to 4 are primary partitions, while those with
number 5 or above are logical partitions. If you want to exclude more than one
partition, separate the partition numbers with commas. For example, 2,5 excludes
the second primary partition and the first logical partition.

Note:
1. This option is valid only for the first physical disk.

2. This option is valid only for partitions defined in the system profile. The
partition scheme defined in the system profile is always written on the disk of
the deployed target. Therefore, if your target has two partitions but your
system profile only one, the deployment always creates the one partition of the
system profile and deletes the second partition of your target.

3. Partitions can be preserved only when the target has the same partition scheme
as the one defined in the system profile. The way partition sizes are defined in
a system profile makes it unlikely for a target not previously deployed with
this system profile to have the same partition scheme.

4. For unattended setup profiles, all partitions must have the option Must be
deployed set to yes for a successful deployment.

Disks

You can manage partition schemes: you can change partition size, you can add
new partitions, you can change mount points.

Targets

In the Fixed target properties section, you can specify fixed parameters common to
all targets using this OS configuration, to avoid specifying them for each target
individually.

Note:

Values in Fixed target properties can contain special keywords that are replaced by
dynamic information. For example, [IP] is replaced by the full IP address of the
target being deployed, while [MAC] is replaced by the hardware address, also
known as Media Access Control (MAC) address. To set names based on the MAC
address, you can enter the following value in the target hostname to set field:
pc[MAC]. The computer with the MAC address 00:01:02:03:04:05 is named
pc000102030405.

60 Tivoli Provisioning Manager for Images: Reference Guide

The following keywords are supported:

* [IP]: full IP address (received by DHCP)

* [MAC]: hardware address

* [SN]: serial number as found in DMI (SMBIOS)

* [BOMID]: unique target identifier in the OS deployment server database
e [AT]: DMI asset tag

* [GRP]: deepest administrative group name to which the target belongs
* [DHCPNAME]: target name as known to the DHCP server

Every keyword supports a range extension if you want to include only part of the
dynamic information. The range starts at value 0. [IP3] corresponds to the last byte
of the IP address (in IP addresses, bytes are separated by dots. pc-[IP3] becomes
pc-12 if IP address is 192.168.0.12). [IP1-3] corresponds to bytes 1 to 3. [MAC3-5] is
replaced by the last three bytes of the MAC address (MAC addresses are typically
represented in hexadecimal, with colons to separate the bytes). For AT, GRP, and
DHCPNAME, the range corresponds to a substring.

You can add an R at the end of the range to have it start from the last value
specified. For example, pc-[SNO-4R]will include the last 5 characters of the serial
number in the hostname.

If you need more flexibility, and you want to use a program to change the values
of the target properties, you must access the ODBC/JDBC database directly. The
BOM table contains almost all of the items that are used by a target when filling
the Sysprep answer file. If your program knows how to access an ODBC/JDBC
database, then you can change everything without using the web interface.

The Target hostname to set is limited to 15 effective characters. However, as you
can use keyword substitution in this field, you can enter more than 15 characters
in the field, provided these characters include character substitution encoding. An
attempt is then performed to estimate the final length of the hostname. A warning
message is displayed if the result of the worse-case estimation is longer than 15.

You can set the TCP/IP mode of the target being deployed. The value you can
select are the following;:

IP, Netmask and Gateway defined in target
The deployment uses the values of the IP, netmask, and gateway defined
in the target page.

Note: This is not compatible with option Undefined, use configuration
parameters in the Target details page.

Import all parameters from DHCP server
All the parameters are taken from the DHCP and set as fixed values.

Force all parameters as dynamic (DHCP)
All the parameters are set dynamically by the target requests to the DHCP
server.

If a DHCP server is available on the end-user's network, you can set TCP/IP
settings to use DHCP.

Note:

Chapter 5. OS deployment object parameters 61

* Any value provided in the OS configuration overrides information entered at the
target level.

* Values provided in the fields following TCP/IP settings are overridden by
DHCP if DHCP provides any value. However, values entered and visible in
these fields are used if DHCP does not provide these values, independently of
the value of TCP/IP settings.

Note: The value of DNS domain is not used in Windows Vista/2008/7/2012
deployments.

Users

In the Fixed user properties section, you can enter the organization name once and
for all. Other required fields are a name, an organization, the time zone and the
language.

Bindings

The OS configuration binding rules summarizes all the bindings linked to the
current OS configuration

Operating system

The name of this section varies depending on the operating system of the OS
configuration.

NN Windows
Windows-specific info
| Vista |l 2008 If you have a Volume License, set

Volume licensing to Yes to avoid a product key entered on the
target or on the OS configuration to be taken into account.

Note: Tivoli Provisioning Manager for Images supports the
RETAIL KEY only. Any volume license key, either MAK or KMS,
entered into a Windows profile will not work. If you only have a
volume license key, select volume license on the product key
screen of the wizard and create a software module that installs the
volume license key through the command slmgr.vbs.

WIS You can enter a Windows product key if you have an
Open License or a similar site license that uses the same product
key for all targets. You can copy the key in its
XXXXX-XXXXX-XXXXX-XXXXX-Xxxxx format and paste it directly in the
product key fields by first pressing and holding down Ctrl and
then pressing V.

Note: This is not a regular Ctrl+V, therefore make sure to first
press Ctrl and then V.

You can provide an Administrator name and password to be set on
the deployed target. The Admin password is limited to 15
characters.

System customization
Two options are mutually exclusive: Add domain user to the local
admin group and Create a local user account.

62 Tivoli Provisioning Manager for Images: Reference Guide

Add domain user to the local admin group
If set, the user is added as an administrator.

Create a local user account
If set, the user is added in a local account.

If either option is set, add the administrator name as an
administrator of the domain.

The option Force user to put a new administrator password works
only in conjunction with the option Create a local user account. It
forces the user to change the password of the local user.

BTSN UNIX
Net boot device indicates the network card to be used when deploying
PowerPC with multiple interfaces. You must set it to the network interface
that was used when registering the target in theOS deployment server. If
this value is incorrect for a given target, the installation switches to
interactive mode.

Network settings

For more information about the network settings, see [“Target parameters and|
[details” on page 55/

Note: If the Join a Windows domain on-site option is selected, the domain name
must be expressed by its NETBIOS name when we deploy an unattended setup
profile, or by the fully qualified domain name (FQDN) when we deploy a cloning
profile.

Chapter 5. OS deployment object parameters 63

64 Tivoli Provisioning Manager for Images: Reference Guide

Chapter 6. Java API

The Java API is a set of classes that map to readable and editable data structures in
the server (OS deployment server).

Java classes are provided to interface directly with all objects and settings.
Previously, Rembo-C scripts were used for these tasks. You can still make Rembo-C
calls through the Java API but you can now write applications that use the
technology without writing a single script in Rembo-C code.

Capabilities of the Java API

At a high level, the Java API offers the following capabilities:
* Booting targets with Wake-on-LAN technology within tasks
* Scheduling tasks
* Creating tasks. Tasks available with the Java API include:
— Deployment of targets
— Operating system restoration on targets
— Image capture of targets (cloning)
— Booting a preboot image on a targets: DOS, LinPE and WinPE are supported

— Running customized Rembo-C scripts on a PXE booted computer, a web
interface extension, or the OS deployment server itself

— Object replication between OS deployment servers

— Configuration of server parameters

— Creation of software modules

— Creation of unattended system profiles from the installation media

— Creation of bootable CDs, which can be used to start the deployment engine
on a target without using PXE

— Exporting objects to RAD files (RAD export)

— Importing RAD files (RAD import)

— Blanking of hard disks on targets

— Conversion of existing Rembo Toolkit images into system profiles

* Creation of open tasks. Every target (and every newly added target) runs an
open task once and only once

* Monitoring tasks

* Cancelling tasks

* Managing server configuration

* Managing targets, such as adding targets, removing targets or changing target
properties

* Managing system profiles

* Managing OS configurations

* Managing software modules

* Managing deployment template

© Copyright IBM Corp. 2014 65

Getting started with Java API

The javaapi.zip file contains the rbapi.jar file required for the Java API, a set of
Java class examples that you can use, and Javadoc for the entire APL

When you installed the product a file called javaapi.zip was copied. This file
contains the rbapi.jar file necessary to use the Java APIL The javaapi.zip file is
located in the top level folder in the directory. By default on OS deployment
servers with a Windows operating system, this is c:\Program Files\IBM\TPMf0Sd.

The communication protocol between the Java API and the OS deployment server
is HTTP and XML. The Java API generates XML code which is passed to the OS
deployment server over HTTP. This communication handles all the function calls
from the Java API to the OS deployment server.

Configuring the OS deployment server to use the Java API

To work with the Java API, some configuration steps are required for the product.

1.

By default, there is no password set up to access the OS deployment server
through the Java APL. When no password is set up, the OS deployment server
accepts connections from trusted computers only. Therefore, you must either set
up your own password to connect to the OS deployment server through the
Java API, or indicate a list of trusted computers.

* To set up your own password to connect to the server through the Java API,
complete the following steps:

a. Open a command prompt in the same directory that contains the

rbagent.exe executable file. On Windows operating systems, the path is
generally C:\Program Files\Common Files\IBM Tivoli\rbagent.exe.

. Run the rbagent command to encrypt your chosen password:

rbagent.exe -d -s <ip_of tpmfosd_server>:<tpmfosd_web_password>
rad-hidepassword <your_new_password>

Your new encrypted password is generated and can be found in the
Result string. For example, an encrypted password can be
A846025095B4AA763231579210233951.

. Create a file called config.csv that looks like this:

HostName;APISecret
<your_hostname>;<your_APISecret>

where <your_hostname> is your Tivoli Provisioning Manager for Images
host name and where <your_APISecret> is your encrypted password.

This is an example of a .csv file:

HostName;APISecret
testhost;A846025095B4AA763231579210233951

Note:

1) <your_hostname> must be either a short host name or a fully qualified
host name, it cannot be an IP address

2) <your_hostname> must be written in lowercase only

3) <your_hostname> must be immediately followed by the semicolon (;)
without any intervening space

66 Tivoli Provisioning Manager for Images: Reference Guide

4) Inside config.csv, the APISecret can either be in plain or encrypted
format. However, do not use the hidden form on the Java side, only
<your_new_password> of step 2.b.

d. Copy the config.csv file to thefiles/global/rad directory. The full path
of the directory is generally C:\TPMfOS Files\global\rad.

* To create a list of trusted computers, complete the following steps:
a. Create a file called config.csv that looks like this:

HostName;APITrusted
<your_hostname>;<list_of_trusted_ip>

where <your_hostname> is your product host name (<your_hostname> must
be either a short host name or a fully qualified host name, it cannot be an
IP address) and where <list_of_trusted_ip> is the list of IP addresses of the
trusted computers. Trusted IP addresses must be given in the dotted
notation (for example, 192.168.168.16) and separated by one space
character.

This is an example of a .csv file:

HostName;APITrusted
testhost;198.162.32.04 198.162.35.23 198.162.12.45

b. Copy the config.csv file to thefiles/global/rad directory. The full path
of the directory is generally C:\TPMfOS Files\global\rad.

2. Stop and start your OS deployment server.
The product is now configured to work with the Java APIL.

Note: There is a known problem when using HTTPS and the IBM JRE 1.5. Other
versions of the IBM JRE work, as well as JRE 1.5 from other brands. If you are
using IBM JRE 1.5, follow these steps to ensure the Java API works with HTTPS
enabled:

1. Check if there is a ibmjsseprovider2.jar under $JAVA HOME%/jre/1ib/ext.
2. If it exists, edit the file java.security under $JAVA_HOME%/jre/1ib/security.

3. In the section headed by security.provider, replace
security.provider.x=com.ibm.jsse.IBMJSSEProvider with
security.provider.x=com.ibm.jsse2.IBMISSEProvider2, wherex is he numeric
value indicating the order of the providers being called.

4. Save the java.security file and try again to use the Java API with HTTPS
enabled.

Examples

The javaapi.zip compressed file contains many ready to use Java code examples
for all kinds of tasks in the examples sub-folder.

Compiling and running examples

The example code in javaapi.zip can be compiled with any Java 1.5 or higher Java
Developer's Kit (JDK).

To compile the Java code (on a Windows operating system, with apidir the
directory where rbapi.jar is extracted), type the following commands :

c:\> cd apidir
c:\apidir> javac -classpath .;rbapi.jar examples*.java

Where apidir is the directory where rbapi.jar is extracted

Chapter 6. Java API 67

To run an example class, in this instance TestRADImport, with 10.10.10.10 as
server IP address, on the default port (8080), with an API secret of mypassword,
type:

c:\> cd apidir

c:\apidir> java -cp rbapi.jar;. examples.TestRADImport 10.10.10.10 8080 mypassword

Understanding the sequence of procedure calls

Java client
’ application

a b

vy

RBServer
object

| 4

c f

v |

= | TPMfOSD
=\ server

| 4

d e

v |
TPMfOSD
SQL database

Figure 1. Step 1

Understanding the sequence of procedure calls between the Java client application,
its objects, the OS deployment server, the SQL database, and the web interface
extension (rbagent) is necessary to use the Java API adequately.

TestRADImport.java, which imports a RAD file to the OS deployment server
through the Java AP]I, is a good example to detail the process. To get the most of
this example, follow the source code of the example, provided in javaapi.zip,
while you view the explanatory diagrams and read their legend.

RAD file import is a process in four sequential top-level steps. For each top-level
step, there is a diagram containing items such as the Java client application, Java
objects, and the OS deployment server, among others. These items are linked by
lettered arrows representing procedure calls. Follow the arrows in alphabetic order.
You can discover the meaning of each arrow in the list which follows each
diagram.

1. Asking the OS deployment server about known targets

RBHost
object

a. The Java client application creates a new RBServer object, the OS
deployment server is referenced by IP address and port

b. The Java client application calls the RBServer.getHosts() method

. RBServer sends a remote procedure call to the OS deployment server (XML
over HTTP)

68 Tivoli Provisioning Manager for Images: Reference Guide

d. The OS deployment server sends an SQL query to the database to get the
list of targets-->

e. The database returns an array of targets is returned -->
f. The OS deployment server encodes the result in XML

g. The RBServer object creates one RBHost object for each targetID returned by
the query

2. Checking the status of the web interface extension on the chosen target

Java client —a— RBHost RBWebExtensionStatus
‘ application object object

|
i | T

9
RBServer J
object
| 4
i f
=| TPMfOSD —d—> Web interface
=] server “—e— extension on host

L

Figure 2. Step 2

a. The Java client application calls RBHost.getIPAddress () to lookup attributes
of the target

b. The Java client application calls RBServer.isWebExtensionReady (IP) to check
the status of the web interface extension (rbagent) on the target selected by
the user

C. RBServer sends a remote procedure call to the OS deployment server

d. The OS deployment server sends a probe packet to the web interface
extension

e. The web interface extension returns its status to the OS deployment server
f. The OS deployment server encodes the result in XML

g. The Java client application gets the status of the web interface extension in a
new RBWebExtensionStatus object

3. Performing the RAD import task

Chapter 6. Java API 69

‘ Java client

application
!
RBServer RBActivity
object —f—> object
L
= | TPMfOSD —d—> Web interface
= server <« h— extension on host
| | |
c g i
TPMfOSD <—‘
SQL database <

Figure 3. Step3

a. The Java client application calls RBServer.registerRADImportActivity with
the name of the RAD file and the target RBHost

b. The RBServer object sends a remote procedure call to the OS deployment
server

c. The SQL database records a new task with its type (RAD import) and
parameters (file name, target, schedule, ...)

d. The OS deployment server sends a signal to notify the target that there is
something to do

e. The OS deployment server sends, in XML, a reference to the new task to
RBServer

f. The target receives a new RBActivity object

g. The web interface extension finds the new task to perform in the SQL
database

h. The web interface extension uploads the RAD file content on the OS
deployment server

i. The web interface extension reports the progress and the completion of the
task to the SQL database

4. Monitoring task progress

70 Tivoli Provisioning Manager for Images: Reference Guide

Java client
application

|
a
|

v

RBActivity RBEvent
object object

il

_l%

= TPMfOSD
=11l server

TPMfOSD
SQL database

Figure 4. Step 4

d.
e.

f.

The Java client application calls RBActivity.getEventsFromServer to check
the task progress and status

RBActivity sends a remote procedure call to the OS deployment server

The OS deployment server uses an SQL query to get the list of events for
this task

The SQL database send the task status to the OS deployment server
The OS deployment server encodes this task in XML

The Java client application receives a new RBEvent object that describes the
current status of the task

Example classes

Here is the list of example classes present in javaapi.zip and a short description
of what each one does.

TestAbortingActivities.java

Shows ways of cancelling a task that has been registered. This test shows
both cancelling the whole task, and cancelling the task on only one specific
task target.

TestAbortingActivitiesForHost.java

Shows an example of cancelling all tasks for a specific target.

TestActRepl.java

Shows how to run a task on a child, even if it has been created by
connecting to the parent server. First a task template is created on the
parent server and then it is replicated to the child workstation by
performing an object copy task. This ensures that when running a task that
uses the template, the child server has this information. Afterward a task is
scheduled that uses the task template in question. If the target boots off the
child server, it will not succeed unless the object copy task of the task
template to the parent server was successful.

Chapter 6. Java API 71

TestAddRemoveHost.java
Shows a very basic example of adding or removing targets.

TestAgentScript.java
Runs a Rembo-C script on an target running the web interface extension.

TestBlackDevAndMod.java
Displays information that you can retrieve about black-listed PCI devices
and models.

TestBootCDCreation.java
Creates a bootable CD from a target running the web interface extension.
You can use the bootable CD to start the deployment engine on a target
without using PXE.

TestCloneFromImageFile.java
This is an example showing capturing a cloned system profile from a
reference image. The reference file can be a Windows Vista WIM image, or
a Solaris Flash file. This is basically an example of using the Java API for
what you can do using the new profile wizard if you select the option
"Cloning from a reference file". Rembo toolkit files can also be cloned into
system profiles, however for these it's best to look at the example
TestToolkitProfileCreation

TestCloneHost.java
This example shows how to capture a cloned system profile from a
reference workstation - Java API equivalent to running the new profile
wizard and choosing "Cloning from a reference workstation". This is the
preferred way to capture a system profile from a target, and should be
used in place of the example class TestRBImageCaptureTemplate

TestiImageManagement.java
Copies objects (task templates, system profiles, or software modules) from
one OS deployment server to another. To run this test you must have
multipleOS deployment servers working together in your environment.

TestLinuxPreboot.java
Boots a LinPE image on a target PXE target.

TestMultiServer.java
Provides information about how to setup a multi-server environment. Also
shows a specific multi-boot server scenario of creating a task template,
moves it to another server, and changes the scope so that the other server
becomes the owner of the object.

TestOpenActivity.java
Runs an open task: this task runs once and only once on all targets that
PXE boot off the OS deployment server.

TestPassword.java
This test class tries connecting to the OS deployment server using the Java
API without supplying a password - typically this is not allowed, as an
APISecret (java api password) needs to be setup in config.csv - however, if
you use the method in config.csv of supplying "APITrusted" and list the
targets that you trust, and then do not supply an APISecret - you can test
that those specific targets can connect to the OS deployment server without
a password with this example.

TestRADExport.java
Exports object(s) to a RAD file using the Java API.

72 Tivoli Provisioning Manager for Images: Reference Guide

TestRADImport.java
Imports a RAD file using the Java APIL

TestRBCustomTemplate.java
Runs a custom Rembo-C script on a PXE target.

TestRBCustomTemplateUsingVariant.java
Similar to TestRBCustomTemplate, but also demonstrates the use of a
variant to override parameters from the template during task registration
without modifying the template itself.

TestRBDeviceBlankingTemplate.java
Performs military grade device blanking of a hard drive on a PXE target.

Note: Run this test with caution as it blanks disks.

TestRBEvents.java
Monitors events: you can run this test while other tests are running to
monitor their progress.

TestRBHosts
Ilustrates some properties of RBHost that can be gathered with the Java
APIL.

TestRBImageCaptureTemplate.java
Refer to the TestCloneHost.java example for details.

TestRBLogFileLines.java
This class shows some examples of how to retrieve the contents of log files
from the OS deployment server through the Java APL

TestCloneHost.java
Creates a system profile cloned from a reference computer (a PXE target).

TestRBOSDeployment.java
Deploys an OS configuration to a PXE target with some customization.

TestRBOSRestoreTemplate.java
Restores a system profile to a PXE target.

TestRBPrebootExecuteTemplate.java
Boots a DOS image on a PXE target.

TestRBServerConfig.java
Displays information about the OS configuration of the OS deployment
server that you can retrieve and modify using the Java APL

TestRBServerReset.java
Restarts the OS deployment server through the Java APL

TestRBServerStatus.java
Gets the status of the OS deployment server through the Java APL

TestSoftwareComponentCreation.java
Creates software modules using the Java APIL This example requires a
target running the web interface extension.

TestStress.java
Runs many tasks and does inefficient polling to put a heavy load on the
OS deployment server.

TestStressSmart.java
Shows a better method than TestStress.java for event polling.

Chapter 6. Java API 73

TestSubnets.java
This test shows some of the subnet information available using the Java
API, and how to probe the subnet again for multicast capability, change
the multicast status and so on.

TestToolkitProfileCreation.java
Creates a system profile from an already existing Rembo Toolkit image.

TestUnattendedProfileCreation.java
Creates an unattended system profile from CD/DVD media.

TestWinPE.java
Boots a WinPE image on a PXE target.

TestWinPE2.java
Boots a WinPE2 image on a PXE target

TestWinPE2Update.java
This example shows how to update drivers in an existing WinPE2 image.

Deployment server configuration and maintenance

This documentation describes the initial classes that you will use, settings, tasks,
and troubleshooting information.

Server connection and status

The first class that is used to establish a relationship with a OS deployment server
is RBServer.

It can be instantiated by providing the IP address and port of the OS deployment
server and a valid authentication token. When a method returns an object, see the
information later in this section for details on the class.

RBServer(InetAddress ip, int port, String token)

There is another constructor for RBServer that takes an additional parameter,
java.util.logging.Level verbosity. This parameter can be used to set a different
level of details in the traces. See for 4“Controlling API traces” on page 85|longer
discussion on traces.

The following methods should be used on instances of RBServer in order to get
access to the various aspects of the server status:

* bool isReady(int timeout): Probes the availability of the OS deployment
server. The parameter timeout is specified in milliseconds.

* RBServerStatus getStatus(): Returns an object describing the current server
status.

* RBServerActHistory getActHistory(int StatType, Date start, long duration,
Tong resolution): Returns an object describing the specified server task history.

* bool isWebExtensionReady(InetAddress ip): Asks the OS deployment server to
check the availability of the web interface extension. The variable ip is the
address of the computer on which the web interface extension is required. The
caller must expect negative answers the first couple of times they call this
method because the answer of the agent never comes back immediately. The
appropriate way to use this method is in a loop and with a few seconds delay
between calls.

An instance of the class RBServerStatus represents a view on the server general
status at the time it was instantiated, as displayed on the page General

74 Tivoli Provisioning Manager for Images: Reference Guide

Information of the web interface. Individual methods such as getVersion,
getHostCount, and getSubnetCount provide access the individual values describing
the state.

Deployment server settings

The following methods should be used on instances of RBServer in order to read
and update the server OS configuration:

* RBServerConfig getConfig(): Returns an object describing the current server OS
configuration

» void updateConfig(RBServerConfig config): Update the server OS configuration
according to the object provided. This can trigger a server restart depending on
the changes applied.

Note: When this method returns the attributes of object, config can be different
because the OS deployment server actually merges differences with its own
records and sends back the resulting object. This remark applies to all update
methods.

» RBBootServerRecs getBootServers(String filter, String order): Returns an
object describing one or several server records in the server replication table.

* RBServerBlackDev[] getBlackListedDevices(): Returns the full list of
black-listed PCI devices .

* RBServerBlackMod[] getBlackListedModels(): Returns the full list of black-listed
target models.

+ void restart(): Force a restart of all threads of the OS deployment service.

An instance of the class RBServerConfig represents a view on the current server OS
configuration, exactly as it is available in the built-in Rembo-C variable RemboConf
on the OS deployment server. Individual methods are provided to access the
individual values of each setting.

The arrays of RBServerBlackDev and RBServerBlackmod instances represent the list
of PCI devices and target models requiring special handling by the deployment
engine, as displayed in “Hardware handling” on the Web interface. Individual
methods are provided to access the individual values of each record.

Targets

At any time, the OS deployment server can know a large number of targets and
the API to access them must remain efficient. For this reason, the API is based on a
query and result set model.

Getting the attributes of a target or of a set of targets is, for scalability reasons, a
two stage process:

1. Query the database about known targets matching a given search pattern with
getHosts; a potentially large number of small records (only IDs) is created.

2. Query the actual attributes, a large record, of a small number of targets with
elementAt or subList.

This is the approach used in the Web interface to respond in a timely manner to
user actions. It is based on the fact that the console can display only a small
amount of data at a time, so it is not necessary to fetch data that cannot be
displayed. Additional records are fetched in a lazy way when they can really be
shown to the console operator.

Chapter 6. Java API 75

The following method should be used on instances of RBServer in order to query
for known targets:

RBHostRecs getHosts(String filter, String order) builds a set of records
matching the specified SQL filter condition, and sorted by the specified SQL
ordering expression. Because SQL syntax is not exactly the same for all DBMS
supported by the OS deployment server, only very simple operators should be
used, for example, <,>,=,1ike, and AND. Field names which correspond to the
attributes of RBHost must be enclosed in square brackets; this helps the server
replace them with the actual field names expected by the database. For
example,getHosts ("[IP] Tike '9. ", "[HostName] asc")

A current description of all tables and columns in the SQL database can be
downloaded directly from the server using a Web browser and the URL:

http:/ /<server_name_or_IP>:8080/virtual / AutoDeployDistrib.ini.

The following methods can then be used on instances of RBHostRecs:
+ int size()
* RBHost elementAt(int index)

* RBHost[] subList(int fromIndex, int toIndex) with the same parameter
semantic as java.util.Vector.subList (element at toIndex not included in the
list)

When several targets should be displayed simultaneously, use the subList method
rather than making several individual elementAt calls.

A record of type RBHost includes all attributes editable on the target details page in
the Web interface of the OS deployment server. Methods are provided to access
them individually, for example, getHostName and setHostName. After making
changes to a RBHost instance, call its update() method to propagate the change to
the OS deployment server. Removing or deleting a target can be done with the
following method:

+ void RBHost.remove(): Removes the specified target record from the server
database.

Manually adding a target is different, because it must handle the case where the
target already exists in the database, which should not be considered as an error
because the computer can have been rightfully discovered. This is handled by the
target registration API, where each of the four parameters can be empty if
unknown but at least one should be specified:

RBHost RBServer.registerHost(String IP, String MAC,
String UUID, String Serial)

This returns the corresponding target record or creates a new one if none exists
yet. The IP address must be given in decimal dotted format, for example,
192.168.2.34. The MAC address must be given in hexadecimal, with or without
colons, for example, 00:16:41:17:AF:DE or 00164117AFDE.

RBHost methods getPxeBootMode and setPxeBootMode use an additional class
PxeBootMode that can take the following several values:

* IGNORE: the PXE server ignores all requests coming from this target.

* HDBOOT: the PXE server sends an answer to cancel the network boot and perform
a harddisk boot.

76 Tivoli Provisioning Manager for Images: Reference Guide

e HDBOOT_IF_IDLE: the target is loaded and performs a harddisk boot if there is no
activity for this target.

* NORMAL: the target is loaded and waits for tasks to perform

Deployment objects
The following objects are required to run an OS deployment:
* System profiles (disk images or installation CD images).
* The differentOS configurations that can be defined for each system profile.
¢ The automatic binding rules that can be defined for each OS configurations.
* Optional software modules (including drivers and DOS floppy images).
* The automatic binding rules that can be defined for each software modules.
Although these objects typically exist in small numbers only on a OS deployment

server, a mechanism that allows the caller to select how many objects are loaded
together is implemented. It is the same principle as for RBHosts.

The following method should be used on instances of RBServer to work on system

profiles:

* RBSystemProfileRecs getSystemProfiles(String filter, String order):
Returns an object that knows all system profiles matching the filter expression
(same semantic as getHosts) and can fetch subsets from the server using the
three methods:

— int size()
— RBSystemProfile elementAt(int index)

— RBSystemProfile[] subList(int fromIndex, int toIndex) with the same
parameter semantic as java.util.Vector.subList

There are three ways to create system profiles:
1. Capture an image from a reference computer.
2. Capture the contents of an installation CD or DVD.

3. Capture an image from a reference image file (a windows WIM image or a
Solaris Flash Archive file).

The partition scheme used during a deployment is part of the system profile. It is
not practical to change this value inside RBSystemProfile for each deployment, and
not always possible to specify partition sizes as percentage of the target of the hard
disk size. It is possible to select the partition scheme dynamically, and other target
parameters as well, every time a deployment task is performed. See the
documentation on RBDiskLayout.

RBConfiguration class

Configurations are used to automate the assignment of parameters to targets
during the deployment of a system profile.

For a longer description of the properties, in the web interface, go to Server > OS
deployment > System Profiles.

The Fixed_ prefix in the property names is a reminder that at deployment time,
the value found in the RBConfiguration overrides values found in the RBHost. The
values in RBHost are applied only if the corresponding Fixed_ value in
RBConfiguration is empty. After the deployment, the values in RBHost reflect the
actual values that have been used. Fixed_ values themselves can be over-ridden

Chapter 6. Java API 77

with values provided in the RBOSDeploymentTemplate in the argument params Map
of RBServer.registerActivity(), or in the params Map of RBActivity.addTarget().

RBConfigurationRecs getConfigurations(String filter, String order) returns
an object that knows all configurations matching the filter expressions, (same
semantic as getHosts) and can fetch subsets from the server using the three
methods.

RBSystemProfile also has a getConfigurations method to retrieve the
configurations that belong to a specific system profile.

RBSoftwarePackage class

RBSoftwarePackageRecs getSoftwarePackages(String filter, String order)
returns an object that knows all software modules matching the filter expression
(same semantic as getHosts) and can fetch subsets from the server using the three
methods:

e int size()
* RBSoftwarePackage elementAt(int index)

» RBSoftwarePackage[] subList(int fromIndex, int toIndex) with the same
parameter semantic as java.util.Vector.subList.

RBSoftwarePackage provides methods to query individual attributes of the
instances, including getDescription and setDescription to virtually rename the
object, corresponding to the various fields displayed on the Web interface.

In regards to pass numbers, older versions used to put software modules in passes
with reboots between the passes. The current version uses a more refined concept
of stages. The reboot between stages is optional, therefore it is possible to install
two software modules in a specific order, without having to reboot between them.
When a software module is bound by an automatic binding rule to the target of a
deployment task, the system uses SoftSeqID to decide when the package must be
installed. The default uses the stage found in the RBSoftwarePackage.

For OS Deployments, an ordered list of software modules can be added to the
RBDeploymentParams. After the OS is deployed, the software modules are installed
based on the order of the software modules in the softwareSequence and passed to
setSoftwareToDeploySequence. It is possible to specify reboots in the
softwareSequence between the installation of two software modules.

RBBootServer class

By default, each OS deployment server automatically installs and uses its own
private database. On Windows, this is done by creating and using Open DataBase
Connectivity (ODBC) source AutoDeploy, linked to the file c:\program
files\ibm\tpmfosd\autodeploy.mdb. You can force the server to use another
existing ODBC source with MSI properties 0DBC_DSN, O0DBC_USERNAME, and
ODBC_PASSWORD.

After installation, it is also possible to select a different source using the fields
DbName, DbUser, and DbPass of config.csv. For more information, go to the Web
address: http://www-1.ibm.com/support/docview.wss?uid=swg21247013. The
advantage of using config.csv is that the same configuration file can be used for
multiple servers, and that it can be updated or reloaded at any time.

78 Tivoli Provisioning Manager for Images: Reference Guide

MultipleOS deployment servers can use the same database. In this case, each
server automatically adds a record in the Servers table. These records are available
in the Java API as RBBootServer objects.

A sample config.csv, for three servers sharing a common MS SQL database can be
found in the javaapi.zip file, inside examples/TestMultiServer.java.

RBBootServerRecs getBootServers(String filter, String order): Returns an
object that knows all OS deployment servers registered in the database that match
the filter expression (the same semantic as getHosts).

Deployment server tasks

A task is an operation that the user wants to perform on one or several targets.

Three classes are used for task management:

1. RBActivityTemplate: Defines what must be done, for example, deploy a given
Windows XP cloning image in multicast, with no bandwidth limitation and
power-off when done.

2. RBActivity: Defines the temporal aspect, for example, start not before than
today 9 p.m. and not after tomorrow 2 a.m..

3. RBActivityTarget: Records one intended of the task and keeps track of progress
and completion. All the instances are stored in the SQL database in order to
persist when a target needs to restart, or when the daemon is restarted.

Task templates

RBActivityTemplate is an abstract class with several subclasses designed to
represent different kind of tasks.

The role of a task template is to store a set of predefined parameters to use when
instantiating future tasks. The constructors and methods reflect the characteristics
of the task. The current list of subclasses includes

* RBPrebootExecuteTemplate is used for hardware configuration.

* RBprofileCreationTemplate creates system profiles from CD-ROM/DVD (
unattended setup), from reference computers (cloning), or from image files.

* RBOSRestoreTemplate restores cloning profiles without customization.
* RBCustomTemplate is used for arbitrary Rembo-C code execution.

* RBOSDeploymentTemplate performs customized deployments.

* RBDeviceBlankingTemplate performs military-grade device blanking.

Note: For some categories of tasks, typically web interface extension tasks such as
creating a software module or creating RAD files, there is no explicit task template.
This is because instances of such individual tasks intrinsically need different
parameters.

Depending on the template, the targets are either OS deployment servers, web
interface extensions, for example, rbagent.exe, or PXE clients.

The instances of RBActivityTemplate have a unique internal ID and a longer
textual description. They know their type and are managed using the RBServer
method :

* RBActivityTemplateRecs getTemplates(String filter,String order)

Chapter 6. Java API 79

Methods of RBServer are used to create new templates on the OS deployment
server and get corresponding Java objects.

RBActivityTemplate has two methods, getEndAction and setEndAction to manage
end actions. The end action indicates what the target must do when the action is
complete:

* STAY: the target waits for more tasks.

¢ HDBOOT: the target performs a boot on harddisk.
REBOQT: the target performs a warm reboot.

¢ POWEROFF: the target is switched off.

RBCustomTemplate

RBCustomTemplate registerCustomTemplate(String description, String script,
Map defaultParams) creates a new task template on the OS deployment server to
run a custom script. The method will return an object that describes the template.
With defaultParams, the caller can pass arbitrary pairs, key and value, to the
script. Keys and values must be textual strings.

RBPrebootExecuteTemplate

RBPrebootExecuteTemplate registerPrebootExecuteTemplate(String description,
RBSoftwarePackage diskImage, String fsType, boolean unloadUndi, int size,
RBFile[] filesToAdd, String[] filesToPatch, Map customParams) creates a new
task template on the provisioning server for the execution of a Preboot image, for
example, a DOS floppy image.

Before a preboot task boots the ramdisk it currently sets the progress to 100 and
the status to COMPLETED.

RBOSDeploymentTemplate

RBOSDeploymentTemplate register0SDeploymentTemplate(String description,
RBConfiguration config) creates a new task template on the OS deployment
server for the deployment of the given OS configuration

To supply custom values at deployment time in a more flexible way than what the
RBConfiguration allows, class called RBDeploymentParams was defined. This class
can be instantiated by the target, using setter methods for relevant fields in RBHost.

The customization done at this level is applied to all targets of the task. The
properties defined in the RBDeploymentParams overrides the same properties
defined in the OS configuration and system profile. In addition, the partition
scheme can be set for all of the task targets from the RBDeploymentParams. The
partition scheme is first retrieved from the OS configuration with the
getDiskLayout method which returns an RBDiskLayout object. This RBDiskLayout
can be modified then set in the RBDeploymentParams with the method
setDiskLayout. An ordered list of software modules can be specified in the
RBDeploymentParams that is installed after the OS deployment.

The installation of software modules is always related to deployment tasks. For a
given deployment, the list of software modules to install is built dynamically. The
list contains packages selected by an automatic binding rule and packages that are
manually selected.

Automatic binding rules are used to install a driver when a PCI device is present
on the target, or to add an application every time a given operating system image

is deployed.

80 Tivoli Provisioning Manager for Images: Reference Guide

For manual selection, all instances of RBOSDeploymentParams can have an optional
attribute SoftwareToDeploy that contains an array of RBSoftwarePackage objects.

RBImageCaptureTemplate

RBImageCaptureTemplate registerImageCaptureTemplate
(String description, boolean withCMOS,

boolean withProtectedPartitions, boolean forceRABCapture,
boolean allowNoSysPrep)

This registers a new OS image capture template on the OS deployment server. The
task creates a new system profile, with all OS configurations that can be detected
on the target.

When registering a task that uses this template, the call to
RBServer.registerActivity() must have the following specified in the params
parameter:

1. An entry with key profiledesc and value which is a String representing the
textual description of the profile.

2. An entry with key profilecomment and value which is a String representing a
comment for the profile.

These must be specified because the same template can be used to take several
images; therefore the strings used to describe and identify the new profile are
given at the task level.

RBOSRestoreTemplate

RBOSRestoreTemplate registerOSRestoreTemplate
(String description, boolean restoreCMOS,
boolean restoreProtectedPartitions, boolean runSysPrep)

This creates a new task template for the deployment of a cloning profile without
customization.

RBSoftwarePackageParams

Parameters used for software module creation tasks are always different, therefore
using a template does not make sense. Consequently, software module creation
tasks use an implicit template and use the class RBSoftwarePackageParams to
specify the task parameters directly at the time when the task is scheduled,
similarly to what can be done using RBDeploymentParams.

Because the type of parameters relevant for the various types of software modules
differ, static methods are provided to instantiate and preset most parameters. In
any case, various methods enable you to read and update optional parameters, for
example, to define static software ordering.

When a set of parameters is obtained, the RBServer method,
probeSoftwarePackageCreation, can be called to simulate the creation of the
software module with the specified set of parameters and return the effective
values that would be completed by the software module creation process. For
example, when a command line is automatically generated or when a default
description is used. Subsequently, or alternatively, the RBServer method,
registerSoftwarePackageCreationActivity, must be called to actually perform the
software module creation. Progress monitoring can be done as with any other type
of task.

All the software module creation tasks must use as the target a computer running
the Web interface extension, rbagent. When the target is a OS deployment server,

Chapter 6. Java API 81

the source path must be visible under the \import directory (but symlinks are
permitted, including under Windows where the -specific symlink files can be
used). In Windows, file paths must be an absolute path preceded with the disk
letter, for example, C:\temp\... or UNC paths, \\file-server\share\.... In order
to have UNC path work correctly, the rbagent process must run as a domain user
having privileges to access the network share.

The software module creation tasks started using the following parameters
captures a diskette into a new software module, for the purpose of running the
floppy in a RAM disk:

RBSoftwarePackageParams newFloppyCreationParams
(String pkgDescr, String comment, String sourcePath)

The software module creation tasks started using this parameter captures a WinPE
CD into a new software module, for the purpose of running WinPE in a RAM disk:

RBSoftwarePackageParams newWinPECreationParams
(String pkgDescr, String comment, String sourcePath)

The software module creation tasks started using this parameter captures a Linux
kernel and initial RAM disk into a new software module, for the purpose of
running Linux in a RAM disk:

RBSoftwarePackageParams newLinuxPECreationParams

(String pkgDescr, String comment, String sourcePath,

String kernelName,
String ramdiskName)

The software module creation tasks started using the following parameters capture
a Windows MSI installation file into a new software module, for the purpose of
installing an application:

RBSoftwarePackageParams newMSICreationParams

(String pkgDescr, String comment, String sourcePath, String destPath,
String cmdLine)

The software module creation tasks started using these parameters captures a
Linux RPM installation file into a new software module, for the purpose of
installing an application:

RBSoftwarePackageParams newRPMCreationParams

(String pkgDescr, String comment, String sourcePath,
String destPath, String cmdLine)

The software module creation tasks started using the following parameters
captures a Solaris PKG installation file into a new software module, for the
purpose of installing an application:

RBSoftwarePackageParams newSolarisCreationParams

(String pkgDescr, String comment, String sourcePath,
String destPath, String cmdLine)

The software module creation tasks started using these parameters captures a
Windows driver installation file into a new software module, for the purpose of
installing a driver:

RBSoftwarePackageParams newWinDriverCreationParams

(String pkgDescr, String comment, String sourcePath,
String destPath, boolean createRules)

The software module creation tasks started using these parameters captures an
arbitrary set of files, scripts, ini files, registry exports (in NT4 format), into a new

software module to customize the deployments.

82 Tivoli Provisioning Manager for Images: Reference Guide

RBSoftwarePackageParams newFileSetCreationParams
(String pkgDescr, String comment, String sourcePath,
String destPath, String cmdLine,

boolean substKeywords, boolean removeFiles)

The software module creation tasks started using the following parameters capture
a command line for execution during a deployment.

RBSoftwarePackageParams newCmdLineCreationParams
(String pkgDescr, String comment, String cmdLine)

Task variants

Each task template has a corresponding task variant class.

Variants are used to set or override parameters in the template at run time without
modifying the template itself. Each task template contains the method
getVariant(); which returns an RBActivityVariant that corresponds to the
template in question. Attributes of the variant are the same as the attributes of the
template itself (in certain cases, variants also contain additional attributes that
apply only at task registration time). This variant can then be modified and passed
in when registering the task (with the registerActivity() method) instead of the
template itself.

For example, if you have an RBOSRestoreTemplate that has an end action of STAY
(the default), but for one particular operating system restore task, you want to
change the end action to HDBOOT (to boot off the hard drive after restoring the
operating system), you can follow these steps:

1. Get an RBOSRestoreVariant based on your template by calling the getVariant ()
method on the template

2. Modify the end action of RBOSRestoreVariant by calling
setEndAction(RBActivityTemplate.HDBOOT)

3. Call the RBServer.registerActivity() method, but pass in the modified
RBOSRestoreVariant instead of the RBOSRestoreTemplate

Task scheduling

The class RBActivity is used to schedule the start of a task. Instances are created
using a method of RBServer.

Here are a couple of examples:

RBActivity registerActivity(String description, RBActivityTemplate template,
boolean suspendOnError, boolean doWakeOnLan, Map params, RBHost target)

It creates a new task of the given type on the OS deployment server and returns an
object that describes it. This simple class method schedules the task to start
immediately and have no expiration date.

RBActivity registerActivity(String description, RBActivityTemplate

template, boolean suspendOnError, boolean doWakeOnLan, Map params,
RBHost[] targetHosts, Date execDate, Date doneDate, Date expireDate)

This method creates a new task of the given type and returns an object that
describes it. It registers several targets, called targetHosts, and gives better control
on the scheduling of the task. The parameters of this method, execDate and
doneDate are used to define a window for the beginning of the task. Targets can
finish performing the task after the end of the window, but it is too late to start.

Chapter 6. Java API 83

The parameter execDate can also be used to select between multiple possible tasks.
If an idle target has several choices, it takes the task with the smallest execDate
first.

The expiration date, expireDate, is used to cleanup database records after a
reasonable amount of time, therefore it is not necessary to manually remove them.
SuspendOnError is used to prevent the start of other tasks by targets that have not
successfully completed this one.

There are two methods in RBServer to stop the execution of tasks:
1. boolean[] abort(RBActivity[] rbActivities): Asks all of the targets of given
tasks to skip or abandon the task.

2. boolean[] abort(RBActivityTarget[] rbActivityTargets): Asks all of the
given targets to skip or abandon the task.

Task targets
Instances of RBActivityTarget represent the actual target performing the task.
There are several ways to provide access to task targets.
* RBServer.registerActivity
* RBActivity.addTarget

* RBActivity.getActivityTargets returns an RBActivityTargetRecs object that
gives access to RBActivityTarget instances.

When an RBActivityTarget generates a result, the method
getActivityTargetResults() can be used to retrieve the resulting object. The class
of the result depends on the type of task. For more information, see the class name
and description in the related task templates.

Events

Monitoring events on OS deployment servers is based on the same HTTP
communication channel as other API calls. A set of lightweight messages can be
used to retrieve lists of events from the server.

The class RBEvent provides information about an event initiated from an
RBActivityTarget. An event is generated when the status of a target changes and
is kept in the SQL database until another event overrides it.

There are two methods to retrieve events from a given OS deployment server:

1. RBEvent[] RBServer.getEvents(Date since) performs a single call to the OS
deployment server and returns all the events that have occurred on this server,
regardless of the task. Only events more recent than since are returned. This
parameter is given in the local time of the Java client, the API does the
necessary conversions to the time of the server database.

2. RBEvent[] RBActivity.getEventsFromServer(Date since) performs a single call
to the OS deployment server and returns all the events that have occurred on
all the targets of this task. Only events more recent than since are returned.

The class RBEvent has the following methods to query event attributes:

e int getProgress()

* String getStatus()

e String getLastProgressMsg()

* Date getUpdateTime()

84 Tivoli Provisioning Manager for Images: Reference Guide

These methods fetch information locally.

The class RBEvent has methods to get fresh instances of related objects:
e RBActity getRBActivity()

* RBActivityTarget getRBActivityTarget()

* RBHost getRBHost()

These three methods perform additional server calls to retrieve current values of
the objects.

It also has the following methods to retrieve related instances within the Java
Virtual Machine (JVM):

* boolean belongsTo(RBActivity)
* boolean belongsTo(RBActivityTarget)
* boolean belongsTo(RBHost)

The purpose of these methods is to pass existing Java objects and to compare
internal IDs in order to test for identity.

Controlling API traces

The logger reads $JAVA_HOME/1ib/1og.properties for the log settings. The user can

use the system property, java.util.Togging.config.file to specify the specific
location of the log.properties file.

An example setting is -Djava.util.logging.config.file=c:/Program
Files/IBM/common/1ogging/log.properties.

This is a sample of a log.properties that writes to both the console and to a file:

Properties file which configures the operation of the JDK
logging facility.

The system will look for this config file, first using
a System property specified at startup:

>java -Djava.util.logging.config.file=myLoggingConfigFilePath

#
#
#
#
#
If this property is not specified, then the config file is
retrieved from its default location at:

#
#

JDK_HOME/jre/1ib/logging.properties

Global logging properties.

B e

The set of handlers to be loaded upon startup.

Comma-separated Tist of class names.
handlers=java.util.logging.FileHandler, java.util.logging.ConsoleHandler

Default global Togging level.
Loggers and Handlers because override this level
.lTevel=ALL

Loggers are usually attached to packages.
Here, the Tevel for each package is specified.
The global level is used by default, so levels
specified here simply act as an override.

com.ibm.rbapi.level=ALL

Chapter 6. Java API

85

Handlers

--- ConsoleHandler ---

Override of global logging level
java.util.logging.ConsoleHandler.level=FINEST
java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

--- FileHandler ---

Override of global logging level
java.util.logging.FileHandler.level=FINEST
java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter

Naming style for the output file:

(The output file is placed in the directory

defined by the "user.home" System property.)
java.util.logging.FileHandler.pattern=%h/java%u.log

Limiting size of output file in bytes:
java.util.logging.FileHandler.1imit=50000

Number of output files to cycle through, by appending an
integer to the base file name:
java.util.logging.FileHandler.count=1

The log level for the rbapi can be set in the log.properties file with the following:
com.ibm.rbapi.level=(SEVERE | WARNING | CONFIG | INFO | FINE | FINEST | ALL)

The first constructor for RBServer uses the settings defined in log.properties:
public RBServer(InetAddress ip, int port, String token)

This other constructor overrides the log level defined in log.properties:
public RBServer(InetAddress ip, int port, String token, Level verbosity)

There are three ways to modify these settings:
1. Restart the application.
2. Instantiate a new RBServer.

3. Modify log.properties and then make a call to
LogManager.readConfiguration();.

86 Tivoli Provisioning Manager for Images: Reference Guide

Chapter 7. Command-line interface

You can run OS deployment server command-line commands, as well as
commands to interface with the OS deployment server.

NetClnt commands are deprecated.

NetCint

NetCInt commands are deprecated.

NetClnt is a command-line utility, available for Windows, Linux and Solaris. You
can use NetClnt to access the files stored on a provisioning server remotely, and to
perform some maintenance tasks.

Here is a list of features included in NetClnt:

Communications between NetClInt and the server are protected with a password
and encrypted.

You can use NetCInt in interactive mode (with an interface similar to a FTP
client), or in batch mode.

You can delete, rename, move, download, and upload files. You can also delete,
rename, and move directories.

You can extract shared files from the server repository, and upload them to the
server repository. Archives including both regular files and related shared files
can be created and reimported to the server.

Using NetCint interactively

NetCInt commands are deprecated.

1.

© Copyright IBM Corp. 2014

Run the file netcInt in your installation directory.
You see the interactive prompt NETFS>.
Open a connection with a OS deployment server:

a. Run the open command, followed with the IP address (or host name) of the
server.

b. Enter the same password as the one set in the NetPassword parameter of the
remote OS deployment server.

Test the connection by issuing adir command. This command downloads and
displays the content of the current directory on the remote OS deployment
server.

¢ If this command works (that is, you see some result), then your connection is
working.

* If you do not see any result, double-check the IP address and password you
have entered with the open command.

You can now use any NetClnt command. For example:
¢ Send a new file to the OS deployment server (put)

¢ Change the current directory (cd)

* Get a server file locally (get)

When you want to send a file to the OS deployment server, the file must exist
on your local computer, in the current directory (you can change the current

87

local directory with Tcd). Downloaded files are stored in the current local
directory. See|“NetClnt command reference” on page 89 for more information
about commands. At any time, you can use the help command to get the list of
valid commands, and a command name without argument to get a short
summary of its syntax.

Using NetCint in batch mode

You can use the batch mode of NetClnt to create scripts operating on remote files
without any user intervention (for example, file upgrade).NetClnt commands are
deprecated.

To use NetClInt in batch mode:

1. Create a text file containing the sequence of commands you want to run with
NetClnt.

2. Run netcint filename, where filename is the name of the text file containing
the sequence of commands. The first command must be the open command,
with a valid IP address and a valid password (password can be passed as the
third parameter to open).

You can pass parameters to your netclInt script, and use them in the script
with the # prefix. For example, you replace every occurrence of #1 in your
script with the first parameter following the script name in the command line
used to run netclnt. To use this new feature, call netcint with the following
syntax:

netcint -f scriptname parameters

where scriptname is the file name of the netclnt script to run, and parameters
are the parameters passed to the netcint script. You can use the new command
chkparams to check that the number of parameters passed to the script
correspond to what the script is expecting.

Example

Here is an example of batch file for use with NetClnt:

open 192.168.1.10 rembopwd
Tock

mkdir /myfiles

cd /myfiles

put filel

put file2

put file3

exit

Here is an example with parameters:
netcint -f script 192.168.1.10 rembopwd

chkparams 2 <server-ip> <rembo-password>
open #1 #2

dir

exit

Using NetCint to manage the shared repository

NetCInt commands are deprecated.

Creating a duplicate repository
The commands getshared and putshared can be used to download and
upload all shared files related to a given archive, to and from a local

88 Tivoli Provisioning Manager for Images: Reference Guide

shared repository. This can be used to duplicate a part of the shared
repository locally, for backup purposes or to transfer it to another
provisioning server.

Note: The local shared repository uses the deployment engine format of
index files, which is slightly different from the server format (the server
format is ready to handle a large number of simultaneous targets, while
the local format is optimized for local access only). Therefore, you should
not copy a shared repository built using getshared directly onto a server,
but use putshared instead.

Exporting shared files

A more convenient way to manipulate disk archives along with the related
shared files is to use .rad file exports. A .rad file can embed several
archive headers and other files, and all related shared files. It is a
convenient way to backup and transmit archives in a self-contained format.
See the description of the commands radget, radput and radlist in the
[“NetClnt command reference.”|

Synchronizing shared repositories

When using several OS deployment servers, if archive files are copied
manually or mechanically from one server to the other, you might need to
replicate the shared repositories to ensure that the destination server has
all necessary server files. The sync, msync and rsync commands can do that
on a specified subset of server files. These commands ask the targeted
server to directly contact the parent server and download any missing
shared file. See the documentation for these commands in the reference
section [“NetCInt command reference.”| Combined with the command
xcopy, rsync is the best way to replicate the content of a parent
provisioning server on a child provisioning server.

NetCint command reference
NetClnt commands are deprecated.

Here is the complete reference for NetClnt commands:

open, connect

close

pwd

open host [password]
connect host [password]

Sets up the connection information required for remote access to the OS
deployment server. This is the first command to issue when starting

NetClnt. If you do not specify the password in the command line, you are
asked to enter the password.

close
Closes the current connection. This command must be issued if you want

to issue a new connect command to the same server, but with a different
password.

pwd

Displays the current remote directory.

Chapter 7. Command-line interface 89

dir, Is
dir [path]
1s [path]

Displays the content of a directory on the remote server. If you use dir
without parameters, the content of the current directory on the server is
displayed (you can use cd to change the current remote directory). If you
use a parameter, the content of the directory specified by the parameter is
displayed (the path is relative to the current remote directory).

cd, chdir
cd path
chdir path

Changes the current remote directory. When NetClInt starts, the current
remote directory is the root directory of the server file system. The path is
relative to the current remote directory.

md, mkdir
md path
mkdir path

Creates a new directory on the server. The path is relative to the current
remote directory.

rd, rmdir
rd path
rmdir path

Deletes a directory on the server. The directory must be empty. The path is
relative to the current remote directory.

deltree
deltree path
Deletes a remote directory and all its sub-directories. The target directory
does not have to be empty. Use this command with caution.

ren, move
ren old-name new-name
move old-name new-name
Renames or moves a file on the server. Both the old file name and the new
file name must be specified. If the new file name is in a different directory
from the old file name, the file is moved. Paths are relative to the current
remote directory.

del, rm
del path
rm path
Removes (deletes) a file on the server. The path is relative to the current
remote directory. If the path is a globbing pattern (that is, it expands file
names using a pattern matching notation), all matching files are deleted.
Acceptable globbing wildcards are the asterisk and the question mark.

led

lcd path

90 Tivoli Provisioning Manager for Images: Reference Guide

Changes the current directory on the local target. This command has no
effect on the server: it only modifies the current directory on the target
which is running NetClnt.

Hocalcommand

!Tocalcommand

Executes a command on the local target . For example, !dir displays the
content of the current directory on the local target . !edit myfile starts the
MS-DOS editor on the file myfile.

get, mget, rget

get remote-path [local-path]
mget pattern
rget pattern

Downloads the remote file remote-path from the current remote directory
into the file Tocal-path in the current local directory. If the second
parameter is omitted, the file is stored under the name remote-path. The
mget variant downloads all remote files that match the globbing pattern to
the local directory. Acceptable globbing wildcards are the asterisk and the
question mark. The rget variant recursively searches all directories
matching the globbing pattern (all files within the directory entered are
copied).

put, mput, rput

xcopy

get local-path [remote-path]
mput pattern
rput pattern

Uploads the local file Tocal-path from the local remote directory into the
file remote-path in the current remote directory. If the second parameter is
omitted, the file is stored under the name local-path on the server. The
mput variant uploads all local files that match the globbing pattern to the
remote directory. The rput variant recursively searches all directories
matching the globbing pattern (all files within the directory entered will
be copied).

xcopy [-d remote-server remote-source-dir local-dest-dir]

Copies files recursively, from a remote server to a local server. All the files
stored in the directory remote-source-dir on the remote server
remote-server are copied in the directory Tocal-dest-dir on the local
server. Tests are made on the source and the destination to skip files that
have already been copied. This function is therefore used to replicate two
servers daily, because it only copies files that have been modified, or
added since the last xcopy operation.

By default, xcopy does not delete any file on the local server. But if -d is
specified as the first parameter, xcopy then deletes every local file that has
not been found on the remote server, creating an exact copy of the remote
server directory in the local directory. The server password must be the
same on both servers for this command to succeed, because xcopy uses the
password provided to the connect when connecting to the remote server.

sync master, msync master, rsync master

sync master [remote-path]
msync master pattern
rsync master pattern

Chapter 7. Command-line interface 91

Orders the connected server to download all missing shared files for the
archive specified by remote-path from another OS deployment server
specified in parent. The server is specified by its IP address or by its DNS
name. The msync variant triggers the transfer of shared files for all archives
matching the globbing pattern in the remote directory. Acceptable
globbing wildcards are the asterisk and the question mark. The rsync
variant recursively enters into all directories matching the globbing
pattern (all files within the directory entered are processed). A typical use
for replicating all shared files from a given server is rsync master *. Note
that the rsync command involves no file transfer to and from NetClnt, but
only between the two servers.

getshared
getshared localarchive [localrepository]

Downloads all available shared files related to a given local archive to a
local repository. By default, the repository is created in the target current
working directory, but you can override the path by specifying a
Tocalrepository parameter. The Tocalarchive can have been previously
downloaded from the server, or copied by another mean.

putshared
putshared remotearchive [localrepository]

Uploads all locally available shared files related to a given server archive
to the server shared repository. By default, files are read from a repository
in the target working directory, but you can override the path by
specifying a Tocalrepository parameter. The remotearchive can have been
previously uploaded to the server, or copied by another means. Both
getshared and putshared optimize network traffic, in the sense that they
only transfer files needed by the specified archive and already in the
destination shared repository.

radget
radget radfile [filex]
radput radfile [filex]
radlist radfile
radcheck radfile

The radget command downloads all files specified on the command line
(several filenames and globbing patterns are accepted), and all related
shared files. The result is stored in a monolithic .rad export file, specified
in radfile. You might need a significant amount of disk space on the
deployment engine to perform this operation. The destination file is always
overwritten (files are not added to an existing radfile). You can use radlist
to list the content of a radfile export, radcheck to verify the internal
consistency of a radfile export, and radput to reupload the files to the
same or another server. If you have not specified a file pattern to the
radput command, then all files in radfile are uploaded (including all
shared files which are not yet known to the destination server). If you
provide a list of files or patterns, only the matching files are uploaded. The
radput works very well even if the source radfile is on a network share,
because it reads only the shared files that are not yet present on the
destination shared repository.

wake
wake hardware-address

92 Tivoli Provisioning Manager for Images: Reference Guide

Sends a wake packet to the specified hardware address. You can use this
command to wake (remote power-on) targets. The target must be located
on the same network as the computer running netclnt. Additionally, the
target must be equipped with a Wake-On-LAN capable network card. The
hardware address must be entered without any delimiters. For example,
hardware address 00:10:4B:12:34:56 must be entered as 00104B123456.

sleep
sleep sleeptime
Waits sTeeptime seconds. This command is useful in batch scripts. No
command is executed during the waiting time.

lock

Tock

Acquires a unique lock on the computer, which is automatically released
when NetClnt exits. This mechanism can be used to ensure that there is
only one instance of NetCInt running at a time on a target , to avoid
conflicts on the server, when automated batch files are run.

getlock, releaselock
getlock lockname
releaselock lockname

Acquires or releases a server lock. A server lock is identified by a name
(Tockname) and can be locked by only one computer at a time. These two
commands can be used to make sure that no computer is accessing a
particular resource during an update. See the GetLock function.

start, stop, reload
start servername
stop servername
reload servername

Controls the Windows service on a remote computer (implemented in
Windows netcint executable file only). These commands start, stop or
reload the OS deployment server on a remote computer, by using standard
Windows remote service control. The user that is logged in when running
netcint must have administrator equivalence on the remote server.

timestamp
timestamp message

Displays a timestamp and a message to the output. This command can be
used in batch scripts to output the current time on the screen, or in a log
file.

chkparams
chkparams regparamcount [usage]

Checks the number of parameters and displays a usage string if
parameters are missing. Use this command only in scripts called with the
netcint -f scriptname params syntax. Chkparam verifies that there is at
least regparamcount parameters in the command line, and displays a usage
string containing the message in the usage parameter if the number of
actual parameters is less than the requested parameters count.

Chapter 7. Command-line interface 93

sqlinit

sqlinit dbgw-ip-addr odbcsource [username password]

sqlclose

sqlexec sql-query

sqlcopy source-dbgw-ip source-odbcsource table-name
[source-username source-password]

This group of functions connects netcint with a database gateway (dbgw)
to perform SQL queries remotely. The remote target must be running both
dbgw and a OS deployment server. Use SqlInit to initiate the connection
with the remote database gateway. You must provide the name of the
ODBC source to use on the remote target , and the ODBC user name and
password if needed. Then, use SqlExec to run SQL statements on the
remote target , or Sq1Copy to copy the content of a table from a given
database gateway, to the remote target (or local host if sqlinit was called
to connect to Tocalhost). When calling Sq1Copy, the parameters
source-dbgw-1ip, source-dobcsource, source-username and source-password
identify the ODBC source to use as the source of the copy operation, and
table-name is the name of the database table to copy. Calling Sq1Copy on a
database table is equivalent to the running of a select statement on the
source, and delete + insert statements on the destination.

RbAgent

RbAgent is running under the operating system and is often referred to as the web
interface extension in this documentation.

The web interface extension, running either on the OS deployment server or on a
deployed computer, can access local resources under the operating system that are
unavailable through the web interface. Its built-in operations are oriented to make
use of these local resources.

RbAgent command reference

rbagent [-0 |-s srvip:password] [-p srvport] [-f iface] [-v verbosity] [-d] [-q] [-] logfile]
[-t tracefile] [-k checkblocks | checkanddeleteblocks path_to_repository]
[-mmaxsize:maxfiles] [-arguments]

-d: prints debug info to the standard output, do not run as a daemon (do not
detach).

-f: specifies the interface. iface is the IP address of the preferred
interface/subnet to use.

-k: specifies if a check should be performed (-k checkblocks) before running the
clean up operation to provide in output an estimate of the space that might be
gained. Specifies (-k checkanddeleteblocks) if the unused blocks should be
removed from the file system after the block content wipe operation.
path_to_repository is the repository location.

-1: specifies the alternate log file, instead of rbagent.log/log?2.

-m: sets the rbagent.Tog and rbagent.trc files not to exceed a specified size in
MB. It also sets a maximum number of files that are kept, after being renamed.
The maximum file size is in MB and must be a value between 1 and 1024. The
maximum number of files must be a value between 2 and 100. This applies to
both rbagent.log and rbagent.trc files.

-o: runs in offline mode (no connection to the OS deployment server)
-p: specifies the port. sroport is the NBP port of the server.
-q: quiet (does not display the banner).

94 Tivoli Provisioning Manager for Images: Reference Guide

* -s: specifies the OS deployment server address. srvip:password is a server IP
address and password, that can be plain text or MD5.

* -t: specifies the alternate trace file, instead of rbagent.trc/trc2.
* -v: sets the logging verbosity level (from 1 to 6, default is 2)

e -arguments: are optional built-in supported operations described in
[RbAgent operations.”]

Built-in RbAgent operations

The following built-in agent operations are used as arguments of the rbagent
command. Each operation identifier is followed by a short description and a usage
example.

checkdevices
Lists the devices (under Windows OS) that do not function correctly, with
their full name.

rbagent checkdevices

cmdlines file
Runs the list of commands that are specified in file, waiting for the end of
each command before starting the next one. Error codes that are returned
by the commands are indicated.

rbagent cmdlines c:\cmdfile.txt

fallback-mbr
Installs a special MBR on the hard disk to force PXE booting at the next
boot. Use this once; the original MBR is restored afterward with its typical
boot order.

rbagent fallback-mbr

hostinfo
Displays general information about the computer.
C:\rbo\bin\remboc\win32>rbagent hostinfo
RbAgent 4.0 ($Revision: #12 $) - (c) Copyright 2004-2005 by IBM, Switzerland

Connect 192.168.1.36 -> 192.168.1.36
Starting Web interface extension

mode]l : 2373FWG ThinkPad T42

platform : TAx86

serial : 99K5VHM

uuid : 261D6A81466E11CBABB7DOEBOA4468DB
hwaddr : 000D60D0O602F

ipaddr : 192.168.1.36

netmask : 255.255.252.0

gateway : 192.168.1.254

dhcpserver : 192.168.1.5
remboserver : 192.168.1.36
Stopping Web interface extension

C:\rbo\bin\remboc\win32>

joindomain domain adminuser adminpwd [joinou]
joins a Windows domainjoindomain /w workgroup [adminuser adminpwd]
joins a Windows workgroup joindomain /s domain trustpwd changes the
trust account.
rbagent joindomain mydomain myadmin mypassword

rbagent joindomain /w myworkgroup
rbagent joindomain /s mydomain mynewtrustpassword

Chapter 7. Command-line interface 95

radcheck radpath.rad
Verifies the consistency of a .RAD archive. radcheck not only checks the file
format but tries to read all files in the .rad file to verify that they are
properly encoded.

rbagent radcheck c:\temp\backup.rad
rad-cancelpendingtasks
Marks for cancellation all tasks that are currently in “pending” or “in

progress” state. As for the rad-canceltask command, the tasks are not
canceled immediately, but the next time that the agent contacts the server.

rbagent rad-cancelpendingtasks

rad-canceltask <TaskID>
Marks for cancellation the task that is identified by TaskID, where TaskID is
a nine-digit identifier. The selected task is not canceled immediately, but
the next time that the agent contacts the server.
Example:
rbagent rad-canceltask 234567819

rad-chksoft sourcepath ["<attr>=value” ...]
Simulates the creation of a new software module. attr can take the values
descr, content, pkgname, dest, cmdline, pass, flags, dosubst, norules, nopcirules,
OSType, OSVersion, OSArch, Model
Example:
rbagent rad-chksoft "c:\drivers\ahci"

rad-configlist [details]
Returns the list of available OS configurations on the server.

Note: Using the details option displays information such as:
* Operating system configuration name

* Operating system configuration ID

* Operating system configuration version

* Operating system configuration timestamp

¢ System profile name

* System profile ID

* System profile operating system type

¢ System profile version

* System profile timestamp

Example:
rbagent rad-configlist [details]
rad-deldriver [md5]
Used to delete a driver according to the md5 sum of its .inf file.
Example:
rbagent rad-deldriver [md5]
rad-deldriverfromfile [file]
Used to read a list of the md5 sums of the .inf files of the drivers to delete.
There is one md5 for each line. The [file] option represents the full path of
the file, which contains the list of the md5 sums.
Example:
rbagent rad-deldriverfromfile [file]

96 Tivoli Provisioning Manager for Images: Reference Guide

rad-deleteadvancedip <AdvancedInterfaceNumber=inum>

<IPIMAC SN | HostName | Description>=..
For the specified target, if it is set in advanced IP settings mode, deletes
the specified NIC identified by the command-line parameter
<AdvancedInterfaceNumber=inum> if available.

Example:

* rbagent rad-deleteadvancedip AdvancedInterfaceNumber=1
MAC=00:0C:29:72:AA:0A

rad-deletehosts <(where clause) | all>
Deletes selected targets. If the all parameter is specified, all targets present
on the OS Deployment Server at the time the command is run are deleted.
Alternatively, you can specify a “Where clause”to select targets that you
want to delete based on any field in the “BOM” table. The conditions in
the clause must be expressed like an SQL clause. Use the percent sign (%)
as a wildcard.

Examples:
1. rbagent rad-deletehosts "where model T1ike 'vmware%'"

Deletes targets whose model name starts with "vmware".
2. rbagent rad-deletehosts "where IP Tike '9.168.104.%"

Deletes targets in a defined IP address range
3. rbagent rad-deletehosts "where StatusDate<#2013/01/01 00:00:00#"

Deletes targets that did not contact the OS Deployment server since the
beginning of 2013.

rad-deployhost <IP | MAC | SN | HostName | Description>= ...

[Scheme=...| SchemeName=...] [Config=... | ConfigName=...] [bind] [reboot | pxeboot]

[wakeup]
Deploys the target specified by either its IP address, MAC address, serial
number, target name, or description. You can specify a scheme and OS
configuration. Use option bind to bind the OS configuration to the target .
Option reboot attempts to restart the target if it is undergoing deployment,
on locked screen, or is running the web interface extension. Option pxeboot
forces the computer to start on the network. Option wakeup tries to turn on
target currently powered off using Wake-on-LAN technology.

Example:
rbagent rad-deployhost IP=192.189.34.32 Scheme=Default pxeboot

rad-destroytasks <(where clause) | all>
Destroys selected tasks. The destroy operation is an unrecoverable task
which is run regardless of the state of the tasks defined on the different
targets. The command removes all task entries including hostactivities,
logs, and trace files. If the all parameter is specified, all tasks present on
the OS Deployment Server at the time the command is run are destroyed.
Alternatively, you can specify a “Where clause”to select tasks that you
want to destroy based on any field in the “Activity” table. The conditions
in the clause must be expressed like an SQL clause. Use the percent sign
(%) as a wildcard.

Examples:
1. rbagent rad-destroytasks "where ExecDate<#2013/01/01 00:00:00#"

Destroys all tasks that were submitted before the beginning of 2013.

Chapter 7. Command-line interface 97

2. rbagent rad-destroytasks "where DeplSet='dftmenu

Destroys all binding menu tasks.

rad-diskerase <[P | MAC | SN | HostName | Description>=..
For the specified target, it initiates a destroy OS task. The destroy
operation is an unrecoverable task.

Example:
* rbagent rad-diskerase MAC=00:0C:29:72:AA:0A

rad-exportlogs destination=... [mode= 1121314 [compress]] [activityid=...]
Used to export debugging information. destination Is the folder where the
logs are copied. If mode=1, all the logs are placed in destination. If mode=2,
all the logs are placed in destination, with only one file for all the tasks. If
mode=3, all the logs are placed in destination, with one file for each task. If
mode=4, all the logs are placed in destination in raw format. compress Can
be used only if mode=4 and compresses the resulting log file. activityid
Provides the logs only for the specified activity.

Example:
rbagent rad-exportlogs destination=c:\temp mode=1

rad-gethostparams [AdvancedInterfaceNumber=inum]

<IPIMAC SN | HostName| Description>= ...

<Description | HostName | IPSettings | IP | NetMask | Gateway | DNSServer[1-

3]1 DNSDomain | DNSOrder>
For the specified target, retrieves the value of the last parameter that is
specified in the command line. For the network parameters (IP, Gateway,
NetMask, DNSServer[1-3]NSDomain, and DNSOrder), Basic IP settings are
assumed by default, and a single value that is associated with the target is
returned. If “Advanced Network Settings” is set, and multiple NICs are
configured, you can query the specific NIC information by specifying the
optional parameter AdvancedInterfaceNumber=inum where inum is the index
(zero-based) of the NIC to be queried.

Example:
rbagent rad-gethostparams AdvancedInterfaceNumber=0 MAC=00:0C:29:72:AA:0A Gateway

Output:

IBM Tivoli Provisioning Manager for Images Web extension v.7.1.1.13(210.54)
Licensed Materials - Property of IBM. L-PSCN-7SXJVW

(C) Copyright IBM Corporation 1998, 2014.

A1l Rights Reserved. IBM, the IBM Togo, and Tivoli are trademarks
of IBM Corporation in the United States, other countries or both.
Bootable: \\.\PHYSICALDRIVEO

Connect 10.10.50.7 -> 10.10.50.7

Device \\.\PhysicalDrive® (0:0) is a regular disk

Device size: 78156288 KB

Hard disk geometry: ff 3f

Non-USB: \\.\PhysicalDrive0®

Device \\.\PhysicalDrivel (0:1) is a regular disk

Device size: 488386584 KB

This disk geometry: ff 3f

Non-USB: \\.\PhysicalDrivel

A <NOT> LoadPakUtils: loading from rbagent.pak

A <NOT> LoadPakUtils: successfully Toaded

A <NOT> Loading server extensions if available

A <NOT> Loading external plugins

A <NOT> Connected to 0S deployment server 5 (nc124095), using
database master on NC124095

A <NOT> DB Name: 'Microsoft SQL Server', DB Version:'09.00.1399',

98 Tivoli Provisioning Manager for Images: Reference Guide

Username: 'dbo’

Gateway : 255.255.255.254
Stopping Web extension

rad-mkbootcd iso-image-path server-ip server-pwd [fixedip] [fixednetmask]

[fixedgateway][allowipoverload][allowsrvipoverload]
Creates a bootable CD to start without network boot. iso-image-path is the
path of the iso file. server-ip is the IP address of the OS deployment server
on which the target must start. server-pwd is the OS deployment server
password. Options fixedip, fixednetmask and fixedgateway are used for target
properties. Options allowipoverload lets the user to modify the IP address of
the target , and allowsrvipoverload lets the target contact a OS deployment
server at another IP address than the one specified by server-IP.

Example:
rbagent rad-mkbootcd myimage.iso 192.168.2.34 mypassword

Note: This command requires "PXE activation" which is not available on
all hardware. The CD created with this command might not work on
specific hardware. See also [Booting targets without using PXE]

rad-mkdrivers [onlynew]
Used to create multiple driver modules. When the onlynew option is
specified, the command detects drivers that are already packaged on the
server and skips them. Without this option, new software modules are
created for all valid drivers.

rad-mklinuxsetup
Used to create a Linux setup image.

rad-mksoft sourcepath ["<attr>=value” ...]
Creates a new software module. attr can take the values descr, content,
pkgname, dest, cmdline, pass, flags, dosubst, norules, nopcirules, OSType,
OSVersion, OSArch, Model Before using this command, try rad-chksoft to
view default values and optionally modify them.
Example:

rbagent rad-mksoft "c:\drivers\ahci" "descr=DriversAHCI" "0SType=Windows 2003%"
"0OSVersion=%Service Pack 1%" "OSArch=x86-64" "Model=1951 Thinkpad T60"

rad-mksolarisbhoot
Used to create a Solaris boot image.
rbagent rad-mksolarishoot
rad-mkvistaclone
Used to create a Windows WIM image.
rbagent rad-mkvistaclone
rad-mkwinsetup
Used to create a Windows setup image.
rbagent rad-mkwinsetup
rad-osrestore <[P | MAC|SN|HostName | Description>= ..
[Config=... | ConfigName=...] [bind][reboot | pxeboot][wakeup][swztchon]
Performs the same as a manual operating system restoration from the web
interface.
Example:
rbagent rad-osrestore IP=192.168.1.19 configName="Windows XP(setup)" bind

Chapter 7. Command-line interface 99

rad-radinfo
Used to describe the logical content of a .RAD archive.

rbagent rad-radinfo

rad-radput radpath.rad [force | ignore] [spdl=<kbytes/s>] [softstages]
Uploads a .RAD archive to the OS deployment server. The force option adds
new objects, even if there are pre-existing objects (profiles, OS
configuration, schemes) with the same description on the server. The ignore
option does not add new objects when there are pre-existing objects with
the same description. The spdl option is the upload speed limit. If the
option softstages is present, the software stages included on the RAD file
override those of the server.

Example:
rbagent rad-radput c:\temp\backup.rad force

rad-registerhost <IPI MACI|SN|UUID>= ... [HostName=...] [...]
Registers a new target identified by either its IP address, MAC address,
serial number or UUID. You can assign values to the target database
records of the new target , such as a target name. The database records
include the BOM table and the User profile. View the information about
keyword substitution in the user's guide for more information.

Example:
rbagent rad-registerhost IP=192.189.34.32 HostName=Host32@location

rad-replicate
Used to replicate all database objects from another OS deployment server.

rbagent rad-replicate

rad-resetscope
Used when the server is renamed. All objects are marked in the database
as belonging to the new name.

rbagent rad-resetscope

rad-runtask
Used to execute any pending task.

rbagent rad-runtask

rad-setbootonhd <truelfalse | status> <IP | MAC| SN | HostName | Description>= ...
For the specified target, sets the “Boot on hard disk if idle”flag, or unsets
it, or prints the status of the flag (based on the first command-line
parameter).

Example:
rbagent rad-setbootonhd false MAC=00:0C:29:72:AA:0A

rad-sethostparams [AdvancedInterfaceNumber=inum]

<IPI MAC | SN | HostName | Description>= ...

<Description | HostName | IPSettings | IP | NetMask | Gateway | DNSServer[1-

3]1 DNSDomain | DNSOrder>=..
For the specified target, sets the value of the last parameter specified in the
command line. The specified value is stored in the database. Advanced
network settings are handled in the same way as in rad-gethostparams.

Example:

rbagent rad-sethostparams AdvancedInterfaceNumber=1
MAC=00:0C:29:72:AA:0A Gateway=255.255.255.255

100 Tivoli Provisioning Manager for Images: Reference Guide

rad-switchipsettings <basic|advanced | status>

<IPIMAC SN | HostName| Description>= ...
For the specified target, switches to basic network settings or to advanced
network settings, or displays the current status, based on the first
parameter specified in the command line.

Example:
rbagent rad-switchipsettings status MAC=00:0C:29:72:AA:0A

Output:

BM Tivoli Provisioning Manager for Images Web extension v.7.1.1.13 (210.54)
Licensed Materials - Property of IBM. L-PSCN-7SXJVW

(C) Copyright IBM Corporation 1998, 2014.

A11 Rights Reserved. IBM, the IBM logo, and Tivoli are trademarks
of IBM Corporation in the United States, other countries or both.
Bootable: \\.\PHYSICALDRIVEO

Connect 10.10.50.7 -> 10.10.50.7

Device \\.\PhysicalDrive0 (0:0) is a regular disk

Device size: 78156288 KB

Hard disk geometry: ff 3f

Non-USB: \\.\PhysicalDrive0

Device \\.\PhysicalDrivel (0:1) is a regular disk

Device size: 488386584 KB

This disk geometry: ff 3f

Non-USB: \\.\PhysicalDrivel

A <NOT> LoadPakUtils: loading from rbagent.pak

A <NOT> LoadPakUtils: successfully Toaded

A <NOT> Loading server extensions if available

A <NOT> Loading external plugins

A <NOT> Connected to 0S deployment server 5 (ncl124095),

using database master on NC124095

A <NOT> DB Name:'Microsoft SQL Server', DB Version:'09.00.1399',
Username: 'dbo'

Status : advanced
Stopping Web extension

rad-unregisterhost <IP|MAC|SN|HostName| Description>= ...
Removes from the OS deployment server a target identified by either its IP
address, MAC address, serial number, target name, or description.
Example:
rbagent rad-unregisterhost IP=192.189.34.32
rad-uploadlogs
Used to send local log files to the OS deployment server.
rbagent rad-uploadlogs
rad-ushget
Used to put deployment data on a USB drive.
rbagent rad-ushget

RbAgent and access to remote files on Windows

If you want RbAgent to have access to remote files, for instance to create a

software module, you must pay attention to whether RbAgent is running as a

service or within a logon session:

* If RbAgent is running within a logon session (user application), the network
shares can be accessed through mapped drive letters.

 If RbAgent is running as a service, mapped drive letters are not accessible
because drive mappings are created for a specific logon session. However,

Chapter 7. Command-line interface 101

RbAgent is able to access files on the network share using a UNC path (for
example \\192.168.168.17\c$\install\).

RbAgent must naturally also have read privileges on the files. These privileges
depend on the workgroup/domain account used to run RbAgent.

rad-mountimage command reference

Using this command, you can mount an image on a target to perform offline
patching.

rad-mountimage [readwrite] (uuidldescr|imageID) cmdline [mount]

Parameter description

readwrite
Needed to update the image, without it the image is read-only.

uuid=<UUID>

uuid=62fabeac-3df4-448d-a576-916dd5b432f2

Provides the universally unique identifier of the image.
descr=<descString>

descr="SLES 10 32-bit"

Provides the description of the image you are mounting, according to the
Description field in the web interface

imagelD=<number>

imageID=003

Provides the image number.
cmdline=<cmdname>

cmdline="xterm"

Provides the command to be performed on the image.
mount=<path>

mount="/tmp"

Specify the root path to mount the partitions of the image

This parameter is optional

If a value is provided for the mount parameter
* the path must start with a slash, for example /example
¢ if the folder does not exist, it is created
* each partition is mounted as partl, part2, to partN under the
root path, where N is the number of partitions
If the mount parameter is not used
* the default /tmp/dev path is used

* each partition in is mounted as 1oopl, Toop2, to ToopN under
/tmp/dev, where N is the number of partitions

In all cases, the swap partition is not mounted. At the end of the off-line patching

process, the root folder provided by the mount parameter is kept, but each partition
subfolder is deleted.

102 Tivoli Provisioning Manager for Images: Reference Guide

Example

rbagent -v 4 -s 192.168.2.19:abcd rad-mountimage readwrite
descr="SLED-10.2_smallest" cmdline="xterm" mount="/example"

rembo command reference

Use this command to perform maintenance operations on the server shared
repository. On Windows platforms, run this command logged on as the local
administrator user.

Syntax

rembo [-d][-v loglevel][options][maintenance_options]

Parameters

-d

-V

Specifies to run as a console application instead of as a service.
Sets the verbosity level. The default value is: 3.

Verbosity levels:

* 0: no output

* 1: log errors

* 2:log errors and warning

* 3: log errors, warnings, and informational messages

* 4: log errors, warnings, informational messages, and notice messages

* 5: log errors, warnings, informational messages, notice messages, and debug
messages

* 6: log everything, including network packets

[options]

-c Specifies the configuration file name. The default file name is:
rembo. conf.

-cert Specifies the file name of a certificate to import.

-convert
Converts the server to the new native file system.

-delcerts
Deletes certificates that were either created automatically or by using
the -cert option.

-exit Stops the server after processing -cert / -c
-force Forces conversion even if a conflict is found.

-readonly
Runs the server in read-only mode (child).

-rehash
Reattribute hashed inode IDs to every file.

-sdb Specifies the server database file name. The default file name is:
server.db.

[maintenance_options]

The following options determine the maintenance operation to be performed
on the shared file repository.

Chapter 7. Command-line interface 103

-chkshared
Initiates a verification process on the server shared repository. Errors
are reported, but no corrective actions are applied. This operation can
take from several minutes to several hours, depending on the size and
fragmentation of the shared repository. During this time, a connection
to the server cannot be established.

-fixshared
Initiates a repair process on the server shared repository. Errors are
corrected by recomputing missing indexes if possible, or deleting
corrupted records. The repair process is automatically triggered when
the server is killed with unflushed changes to the shared repository.
This operation can take from several minutes to several hours,
depending on the size and fragmentation of the shared repository.
During this time, a connection to the server cannot be established.

-k checkblocks
Specifies if a check should be performed before running the clean up
operation to provide in output an estimate of the space that might be
gained.

-k checkanddeleteblocks
Specifies if the unused blocks should be removed from the file system
after the block content wipe operation.

-statshared
Initiates a complete analysis on the server shared repository, and
displays a summary of shared files usage. This operation can take from
several minutes to several hours, depending on the size and
fragmentation of the shared repository. During this time, a connection
to the server cannot be established.

-sweepshared
Initiates a mark and sweep operation on the server shared repository.
Shared files not used in any archives on the server (as reported by the
-statshared option) will be cleaned out. This can be used to recover
disk space on the server after deleting a significant number of disk
images. This operation can take from several minutes to several hours,
depending on the size and fragmentation of the shared repository.
During this time, a connection to the server cannot be established.

-packshared
Initiates a mark and sweep operation on the server repository, then
shrinks all shared repository files to their minimum size to recover any
preallocated storage. Note that the use of this function may lead to
fragmentation of the shared file repository, and its use is therefore not
recommended unless disk space must be recovered for other
applications. This operation can take from several minutes to several
hours, depending on the size and fragmentation of the shared
repository. During this time, a connection to the server cannot be
established.

Example

To mark and sweep a set of files on the shared repository to decrease the size of
the repository, run the command:

rembo -d -v 4 -packshared

104 Tivoli Provisioning Manager for Images: Reference Guide

dbgw command reference

Use this command to install and uninstall the dbgw service. You can also disable
remote connections using this command. This command is available only for
Windows operating systems. For Linux operating systems a dbgw. jar file is
provided.

Syntax

dbgw [-d] [-v verbosity] [-f logfile] [-t idle-sec] [-1]

dbgw -i
dbgw -u
Parameters

-d Specifies to run as a console application instead of as a service.

-v verbosity
Sets the verbosity level. The default value is: 3.
Verbosity levels:
* 0: no output
* 1: log errors
* 2:log errors and warning
* 3: log errors, warnings, and informational messages
* 4: log errors, warnings, informational messages, and notice messages

* 5: log errors, warnings, informational messages, notice messages, and debug
messages

* 6: log everything, including network packets.

-f logfile
Writes the output of the gateway to a file. By default, it is sent to standard
output.

-t idle-sec
Specifies the timeout before the connection is automatically closed. The default
value is 120.

-1 Disables remote connections.
-i Installs the dbgw service.

-u Uninstalls the dbgw service.
Example

To run the gateway as a command from the command line and log all the SQL
queries, submit the following command:

dbgw -d -v 4

Note: The dbgw service is provided in each TPM server, but in the integrated
environment the child server installed by TPM does not use this service.

Chapter 7. Command-line interface 105

106 Tivoli Provisioning Manager for Images: Reference Guide

Chapter 8. Glossary

A

administrative group
A group of related computers. An administrator can create administrative
groups to organize target systems into meaningful categories, and to
facilitate deployment of software to multiple targets.

B

bare metal computer
A computer on which there is nothing reliable but the hardware. It can be
coming straight from factory without any data on its hard disk (out of the
box) or it can contain a possibly damaged operating system.

Basic Input/Output System (BIOS)
The code that controls basic hardware operations, such as interactions with
diskette drives, hard disk drives, and the keyboard.

BIOS See [Basic Input/Output System}

blacklist
In Tivoli Provisioning Manager for Images, a list of PCI devices or of
computer models which are known to raise issues, accompanied by
hardware settings which must be used to work around the issues.

C

child An OS deployment server that is a subordinate of another OS deployment
server in a replication tree structure. Only the top-level parent OS
deployment server is not a child. See also Earentl

clone To prepare a reference computer and create a system profile ready for
deployment.

D

database server
The computer on which the database application and database are
installed.

Deployment
A process which installs an operating system, and possibly other
applications and files, on a target computer. During a deployment, data
previously stored on the hard drives of the target is deleted.

Deployment scheme
A specific type of task template. A deployment scheme contains parameters

for customizing a deployment on a target, and the target display screen
layout. See also ftask template

DHCP See [Dynamic Host Configuration Protocoll

Dynamic Host Configuration Protocol (DHCP)
A communications protocol that is used to centrally manage configuration
information. For example, DHCP automatically assigns IP addresses to
computers in a network.

© Copyright IBM Corp. 2014 107

F

free-text condition
In Tivoli Provisioning Manager for Images, a condition written in
Rembo-C; syntax, using variables and Java-like logical operators, and
which evaluates to true or false.

H

hardware configuration
A set of parameters used to configure hardware before an operating system
installation. It includes RAID settings, BIOS update information, BIOS
settings, and custom hardware configuration parameters.

M

MCAST
A proprietary transfer protocol of Tivoli Provisioning Manager for Images
computers using multicast. Contrast with [unicast| and [PCAST|

MTFTP
See [Multicast Trivial File Transfer Protocol]

multicast
Bandwidth-conserving technology that reduces traffic by simultaneously
delivering a single stream of information to many computers.

Multicast Trivial File Transfer Protocol (MTFTP)
Multicast TFTP.

N

network boot
The process of starting up a computer directly over the network rather
than on a disk.

o)

OS configuration
The operating system parameters of a system profile .

OS deployment server
The computer on which the Tivoli Provisioning Manager for Images
application and files are installed.

P

parent An OS deployment server in a replication tree structure that has at least
one dependent OS deployment server. See also .

PCAST
A proprietary transfer protocol of Tivoli Provisioning Manager for Images
that delivers non-identical sets of files to several target computers using
multicast. Contrast with [MCAST|and [unicast|

PCI See [Peripheral Component Interconnect]

Peripheral Component Interconnect
A local bus that provides a high-speed data path between the processor
and attached devices.

Preboot Execution Environment (PXE)
PXE is an industry standard target/server interface that allows networked

108 Tivoli Provisioning Manager for Images: Reference Guide

computers that are not yet loaded with an operating system to be
configured and booted remotely. PXE is based on Dynamic Host
Configuration Protocol (DHCP). Using the PXE protocol, targets can
request configuration parameter values and startable images from the
server. The PXE process consists of the system initiating the protocol by
broadcasting a DHCPREQUEST containing an extension that identifies the
request as coming from a target that uses PXE. The server sends the target
a list of OS deployment servers that contain the operating systems
available. The target then selects and discovers an OS deployment server
and receives the name of the executable file on the chosen OS deployment
server. The target downloads the file using Trivial File Transfer Protocol
(TFTP) and runs it, which loads the operating system.

PXE See [Preboot Execution Environment

R

RAD file
A file containing deployment objects such as task templates, system
profiles, and software modules used to archive data or to transfer data
between two OS deployment servers. A RAD file has a .rad extension.

RAID See [Redundant Array of Independent Disks|

redeployment
The process of synchronizing a hard-disk content to its reference image
stored on a hidden and protected redeployment partition.

redeployment preload
The process of creating a reference image of a computer at the end of a
deployment, and saving this reference image into a protected
redeployment partition (invisible to the user and to the operating system
itself).

Redundant Array of Independent Disks (RAID)
RAID is a way of storing the same data in different places (thus,
redundantly) on multiple hard disks. By placing data on multiple disks,
I/0O operations can overlap in a balanced way, improving performance.
Multiple disks increase the mean time between failure (MTBF) and storing
data redundantly increases fault-tolerance.

Rembo-C;
A programming language, descendant of the C language combined with
traces of JavaScript and Java.

replicated server
An OS deployment server which shares data with one or several other OS
deployment servers. The servers are hierarchically structured with a parent
and child servers. A child child can act as parent to replicated servers
further down in the hierarchy.

replication
The process of copying files from a parent server to a child server. A
selection can be performed on the kind of information that must be
replicated. Files that have been modified are copied over.

S

shared repository
In Tivoli Provisioning Manager for Images, a repository of server objects

Chapter 8. Glossary 109

where each file is stored only once, even if it belongs to several objects.
The shared repository reduces the storage space necessary to hold all
server objects.

software module
A group of files, and potentially command lines, packaged together under
one name. A software module can be installed on a target during a
deployment.

software snapshot
A differential image of software installed on top of a running operating
system. Software snapshot creation is deprecated. Any previously created
software snapshots can be deployed for compatibility with earlier versions.

system profile
The partition layout and list of files for deployment of an operating
system, either by unattended setup or by cloning. A system profile can
have several configurations.

system snapshot
For Windows only. The partition layout and list of files for deployment of
an operating system, created by cloning without using Sysrep. A system
snapshot cannot be parametrized and can only be restored, not deployed.

T

target A computer that is known to an OS deployment server.

target list
A comma-separated-value list of targets used for adding large numbers of
targets to the OS deployment server without having to start the targets up
individually on the network.

task A set of actions designed to achieve a particular result. A task is performed
on a set of targets on a specific schedule.

task template
A group of elements which can be customized on a target computer. These
elements are mostly screen layouts which condition the appearance of the
target computer screen during the different phases of its control by Tivoli
Provisioning Manager for Images. See also [Deployment scheme}

TCP tunnel
A way to provide TCP connectivity to target computers.

TFTP See [Trivial File Transfer Protocoll

Trivial File Transfer Protocol (TFTP)
In Internet communications, a set of conventions that transfers files
between targets using minimal protocol.

U

unattended setup
Operating system installation on a target, using original installation files
and parameters contained in a script defined on the OS deployment server.
Contrast with clone.

unicast
Transmission of data to a single destination. In Tivoli Provisioning
Manager for Images, a transfer protocol that delivers a stream of files to a
single target. Based on TCP, this protocol is faster when there are only a

110 Tivoli Provisioning Manager for Images: Reference Guide

few target computers on the receiving end of the transfer. This protocol can
also be used in networks where multicast traffic is not properly handled.
Contrast with[MCAST|and [PCAST]

universal image
A cloned system profile that has been prepared with all drivers for disk
types and hardware abstraction layer variants encountered in the pool of
targets to be deployed.

w

Wake on LAN
A technology that enables a user to remotely turn on systems for off-hours
maintenance. A result of the Intel-IBM Advanced Manageability Alliance
and part of the Wired for Management Baseline Specification, users of this
technology can remotely turn on a server and control it across the network,
thus saving time on automated software installations, upgrades, disk
backups, and virus scans.

Web interface
A user interface for one or more administrative tasks.

Web interface extension
An agent that allows the web interface to have access to the content of the
target on which it is running. For example, to browse disks and read and
write files.

zone An IP range or domain that is used to logically group computers into
regions. You can define one or more zones for each region.

Chapter 8. Glossary 111

112 Tivoli Provisioning Manager for Images: Reference Guide

Chapter 9. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.

1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2014 113

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

274A /101

11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM'’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

114 Tivoli Provisioning Manager for Images: Reference Guide

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Notice for Windows Automated Installation Kit (AIK)

Windows Automated Installation Kit (AIK) for Windows 7 in English is distributed
by Microsoft and is available on the Microsoft website from the following link at
the time of publication: |http: / /www.microsoft.com/downloads/|
details.aspx?familyid=696DD665-9F76-4177-A811-39C26 D3B3B34&displaylang=en]

The Windows AIK is licensed to you by the code's owner and not by IBM it is
your responsibility to determine whether the license terms offered by the code's
owner are acceptable to you.

YOUR USE OF THE WAIK AND ANY URL'S OR MATERIALS ON THIRD PARTY
WEBSITES ("THIRD PARTY MATERIALS") IS "AS IS", WITHOUT WARRANTY
FROM IBM OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NON-INFRINGEMENT. TO THE EXTENT PERMITTED BY LAW,
IBM DISCLAIMS ALL LIABILITY FOR ANY CLAIMS ARISING OUT OF USE OF
THE THIRD PARTY MATERIALS.

Notice for Windows Assessment and Deployment Kit (ADK) for
Windows 8

Windows Assessment and Deployment Kit (ADK) for Windows 8 in English is
distributed by Microsoft and is available on the Microsoft website from the
following link at the time of publication: fhttp://www.microsoft.com /downloads /|
[details.aspx?familyid=696DD665-9F76-4177-A811-39C26D3B3B34&displaylang=en|

The Windows AIK is licensed to you by the code's owner and not by IBM it is
your responsibility to determine whether the license terms offered by the code's
owner are acceptable to you.

YOUR USE OF THE WAIK AND ANY URL'S OR MATERIALS ON THIRD PARTY
WEBSITES ("THIRD PARTY MATERIALS") IS "AS IS", WITHOUT WARRANTY
FROM IBM OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NON-INFRINGEMENT. TO THE EXTENT PERMITTED BY LAW,
IBM DISCLAIMS ALL LIABILITY FOR ANY CLAIMS ARISING OUT OF USE OF
THE THIRD PARTY MATERIALS.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (or "), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at [Copyright and trademark information| at www.ibm.com/legal/
copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems
Incorporated in the United States, other countries, or both.

Chapter 9. Notices 115

http://www.microsoft.com/downloads/details.aspx?familyid=696DD665-9F76-4177-A811-39C26D3B3B34&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=696DD665-9F76-4177-A811-39C26D3B3B34&displaylang=en
http://www.microsoft.com/en-us/download/details.aspx?id=30652
http://www.microsoft.com/en-us/download/details.aspx?id=30652
http://www.ibm.com/legal/copytrade.shtml

Intel and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows , and Windows NT are trademarks or registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States, other
countries, or both.

Other company, product and service names may be trademarks or service marks of
others.

Copyrights
© Copyright IBM Corporation 2009, 2010. All rights reserved.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

IBM web site pages may contain other proprietary notices and copyright
information which should be observed.

Portions of third-party software included in this IBM product is used with
permission and is covered under the following copyright attribution statements:

* Copyright (c) 1998-2005, The OpenSSL Project. All rights reserved.

* Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler, the ZLIB data
compression library.

* Copyright 1994-2006, The FreeBSD Project. All rights reserved.

The MD5 Message-Digest Algorithm was developed by Ron Rivest. The public
domain C language implementation used in this program was written by Colin
Plumb in 1993. Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, without any
conditions or restrictions. This software is provided "as is" without express or
implied warranty.

Portions include cryptographic software written by Eric Young

(<(eay@cryptosoft.com)>). This product may include software written by Tim
Hudson (<(tjh@cryptosoft.com)>).

116 Tivoli Provisioning Manager for Images: Reference Guide

Printed in USA

	Contents
	Chapter 1. Keyboard navigation on the target
	Chapter 2. The web interface
	Server status
	Server parameters
	Server history
	OS deployment
	Server log files

	Chapter 3. Database schema
	Database schema overview
	Bill of Material-related tables
	OS configuration-related tables

	Chapter 4. OS deployment server configuration
	Global parameters
	Base parameters
	web interface parameters
	Boot module parameters
	Network boot parameters
	File access module parameters
	Network share module
	New targets default parameters

	HTTP Console Security parameters
	Authentication domains
	TCP tunnels
	Creating a new hardware rule
	Default port numbers
	Configuring OS deployment server with a text file
	Parameter reference
	Global parameters
	Authentication domains
	TCP tunnels

	Chapter 5. OS deployment object parameters
	Target parameters and details
	OS configuration parameters

	Chapter 6. Java API
	Getting started with Java API
	Configuring the OS deployment server to use the Java API
	Examples
	Compiling and running examples
	Understanding the sequence of procedure calls
	Example classes

	Deployment server configuration and maintenance
	Server connection and status
	Deployment server settings
	Targets
	Deployment objects
	RBConfiguration class
	RBSoftwarePackage class
	RBBootServer class

	Deployment server tasks
	Task templates
	RBCustomTemplate
	RBPrebootExecuteTemplate
	RBOSDeploymentTemplate
	RBImageCaptureTemplate
	RBOSRestoreTemplate
	RBSoftwarePackageParams

	Task variants
	Task scheduling
	Task targets

	Events
	Controlling API traces

	Chapter 7. Command-line interface
	NetClnt
	Using NetClnt interactively
	Using NetClnt in batch mode
	Using NetClnt to manage the shared repository
	NetClnt command reference

	RbAgent
	RbAgent command reference
	Built-in RbAgent operations
	RbAgent and access to remote files on Windows
	rad-mountimage command reference

	rembo command reference
	dbgw command reference

	Chapter 8. Glossary
	Chapter 9. Notices

